Skip to main content
Log in

Phage display: practicalities and prospects

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Phage display is a molecular technique by which foreign proteins are expressed at the surface of phage particles. Such phage thereby become vehicles for expression that not only carry within them the nucleotide sequence encoding expressed proteins, but also have the capacity to replicate. Using phage display vast numbers of variant nucleotide sequences may be converted into populations of variant peptides and proteins which may be screened for desired properties. It is now some seventeen years since the first demonstration of the feasibility of this technology and the intervening years have seen an explosion in its applications. This review discusses the major uses of phage display including its use for elucidating protein interactions, molecular evolution and for the production of recombinant antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Casey, J.L., Coley, A.M., Tilley, L.M. and Foley, M. 2000. Green fluorescent antibodies: novel in vitro tools. Protein Engin. 13(6): 445–452.

    Google Scholar 

  • Castillo, J., Goodson, B. and Winter, J. 2001. T7 displayed peptides as targets for selecting peptide specific scFvs from M13 scFv display libraries. J. Immunol. Meth. 257: 117–122.

    Google Scholar 

  • Choo, Y., Sánchez-Garcia, I. and Klug, A. 1994. In vivo repression by a site-specific DNA-binding protein designed against an oncogenic sequence. Nature 372: 642–645.

    Google Scholar 

  • Clackson, T., Hoogenboom, H.R., Griffiths, A.D. and Winter, G. 1991. Making antibody fragments using phage display libraries. Nature 352: 624–628.

    Google Scholar 

  • Danielsen, S., Eklund, M., Deussen, H-J., Graslund, T., Nygren, P-Å. and Borchert, T.V. 2001. In vitro selection of enzymatically active lipase variants from phage libraries using a mechanismbased inhibitor. Gene 272: 267–274.

    Google Scholar 

  • Danner, S. and Belasco, J.G. 2001. T7 phage display: a novel genetic selection system for cloning RNA-binding proteins from cDNA libraries. Proc. Nat. Acad. Sci. USA 98(23): 12954–12959.

    Google Scholar 

  • Debouck, C. and Goodfellow, P.N. 1999. DNA microarrays in drug discovery and development. Nature Genetics (supplement) 21: 48–50.

    Google Scholar 

  • De Jaeger, C., De Wilde, C., Eeckhout, D., Fiers, E. and Depicker, A. 2000. The plantibody approach: expression of antibody genes in plants to modulate plant metabolism or to obtain pathogen resistance. Plant Mol. Biol. 43: 419–428.

    Google Scholar 

  • Dennis, M.S. and Lazarus, R.A. 1994. Kunitz domain inhibitors of tissue-factor VIIa. I. Potent inhibitors selected from libraries by phage display. J. Biol. Chem. 269: 22129–22136.

    Google Scholar 

  • Drees, B.L. 1999. Progress and variations in two-hybrid and three hybrid technologies. Curr. Opin. Chem. Biol. 3: 64–70.

    Google Scholar 

  • Gadella, T.W.J., van der Krogt, G. N. M. and Bisseling, T. 1999. GFP-based FRET microscopy in living plant cells. Trends Plant Sci. 4(7): 287–291.

    Google Scholar 

  • Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., McCafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. and Winter, G. 1993. Human anti-self antibodies with high specificity from phage display libraries. EMBO J. 12(2): 725–734.

    Google Scholar 

  • Haab, B.B., Dunham, M.J. and Brown, P.O. 2001. Protein microarrays for highly parallel detection and quantification of specific proteins and antibodies in complex solutions. Genome Biol. 2(2): 1004.1–1004.13.

    Google Scholar 

  • Hamers-Casterman, C., Atarhouch, T., Muyldermans, S., Robinson, G., Memaers, C., Bajyana Songa, E., Bendahman, N. and Hamers, R. 1993. Naturally occurring antibodies devoid of light chains. Nature 363: 446–448.

    Google Scholar 

  • Hoogenboom, H.R. 1997. Designing and optimising library selection strategies for generating high-affinity antibodies. TIBTECH 15: 62–70.

    Google Scholar 

  • Hoogenboom, H.R., de Bruïne A.P., Hufton, S.E., Hoet, R.M., Arends, J-W. and Roovers, R.C. 1998. Antibody phage display and its applications. Immunotechnology 4: 1–20.

    Google Scholar 

  • Hoogenboom, H.R. and Winter, G. 1992. By-passing immunisation. Human antibodies from synthetic repertoires of germline VH segments rearranged in vitro. J. Mol. Biol. 227: 381–388.

    Google Scholar 

  • Johns, M., George, A.J.T. and Ritter, M.A. 2000. In vivo selection of scFv from phage display libraries. J. Immunol. Meth. 239: 137–151.

    Google Scholar 

  • Kay, B.K. and Hoess, R.H. 1996. Principles and applications of phage display. In: B.K. Kay, J. Winter and J. McCafferty (eds.) Phage display of peptides and proteins, Academic Press, pp. 21–34.

  • Kay, B.K., Kasanov, J., Knight, S. and Kurakin, A. 2000. Convergent evolution with combinatorial peptides. FEBS Lett. 480: 55–62.

    Google Scholar 

  • Kirkham, P.M., Neri, D. and Winter, G. 1999. Towards the design of an antibody that recognises a given protein epitope. J. Mol. Biol. 285: 909–915.

    Google Scholar 

  • Kodadek, T. 2001. Protein microarrays: Prospects and problems. Chem. Biol. 8: 105–115.

    Google Scholar 

  • Lander, E.S. 1999. Array of hope. Nature Genetics (supplement) 21: 3–4.

    Google Scholar 

  • Lowman, H.B. and Wells, J.A. 1993. Affinity maturation of human growth hormone by monovalent phage display. J. Mol. Biol. 234: 564–578.

    Google Scholar 

  • Morino, K., Katsumi, H., Akahori, Y., Iba, Y., Shinohara, M., Ukai, Y., Kohara, Y. and Kurosawa, Y. 2001. Antibody fusions with fluorescent proteins: a versatile reagent for profiling protein expression. J. Immunol. Meth. 257: 175–184.

    Google Scholar 

  • Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., McCafferty, J., Griffiths, A.D. and Winter, G. 1991. By-passing immunisation. Human antibodies from V-gene libraries displayed on phage. J. Mol. Biol. 222: 581–597.

    Google Scholar 

  • Matthews, D.J. 1996. Substrate phage. In: B.K. Kay, J. Winter and J. McCafferty (eds.), Phage display of peptides and proteins, Academic Press, pp. 255-259.

  • Mendelsohn, A.R. and Brent, R. 1999. Protein interaction methods-towards an endgame. Science 18(284): 1948–1950.

    Google Scholar 

  • McCafferty, J. 1996. Phage display: factors affecting panning effi-ciency. In: B.K. Kay, J. Winter and J. McCafferty (eds.), Phage display of peptides and proteins, Academic Press, pp. 261-276.

  • McCafferty, J. and Johnson, K.S. 1996. Construction and screening of antibody display libraries. In: B.K. Kay, J. Winter and J. McCafferty (eds.), Phage display of peptides and proteins, Academic Press, pp. 79-111.

  • McPherson, M.J. and Harrison, D.J. 2001. Protease inhibitors and directed evolution: enhancing plant resistance to nematodes. In: A. Berry and S.E. Radford (eds.), From protein folding to new enzymes, Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Nissim, A., Hoogenboom, H.R., Tomlinson, I.A., Flynn, G., Midgley, C., Lane, D. and Winter, G. 1994. Antibody fragments from a 'single-pot' phage display library as immunological reagents. EMBO J. 13: 692–697.

    Google Scholar 

  • Owen, M., Gandecha, A., Cockburn, B. and Whitelam, G. 1992. Synthesis of a functional anti-phytochrome single-chainFv protein in transgenic tobacco. Bio/technology 10: 790–794.

    Google Scholar 

  • Petrenko, V.A. and Smith, G.P. 2000. Phages from landscape libraries as substitutes for antibodies. Protein Engin. 13(8): 589–592.

    Google Scholar 

  • Rodi, D.J. and Makowski, L. 1999. Phage-display technology-finding a needle in a vast molecular haystack. Curr. Opin. Biotechnol. 10: 87–93.

    Google Scholar 

  • Rodi, D.J., Makowski, L. and Kay, B.K. 2001. One from column A and two from column B: the benefits of phage display in molecular-recognition studies. Curr. Opin. Chem. Biol. 6: 92–96.

    Google Scholar 

  • Rondot, S., Koch, J., Breitling, F. and Dübel, S. 2001. A helper phage to improve single-chain antibody presentation in phage display. Nature Biotechnol. 19: 75–78.

    Google Scholar 

  • Sidhu, S.S. 2001. Engineering M13 for phage display. Biomol. Engin. 18: 57–63.

    Google Scholar 

  • Shimada, N., Suzuki, Y., Nakajima, M., Conrad, U., Murofushi, N. and Yamaguchi, I. 1999. Expression of a functional singlechain antibody against GA24/19 in transgenic tobacco. Biosci. Biotechnol. Biochem. 63: 779–783.

    Google Scholar 

  • Shinohara, N., Demura, T. and Fukuda, H. 2000. Isolation of a vascular cell wall-specific monoclonal antibody recognising a cell polarity by using a phage display subtraction method. Proc. Nat. Acad. Sci. USA 97(5): 2585–2590.

    Google Scholar 

  • Smith, G.P. 1985. Filamentous phage fusion: novel expression vectors that display cloned antigens on the surface of the viron. Science 228: 1315–1317.

    Google Scholar 

  • Smith, M.D. and Glick, B.R. 2000. The production of antibodies in plants: an idea whose time has come? Biotechnol. Adv. 18: 85–89.

    Google Scholar 

  • Sparks, A.B., Adey, N.B., Cwirla, S. and Kay, B.K. 1996. Screening phage-displayed random peptide libraries. In: B.K. Kay, J. Winter and J. McCafferty (eds.), Phage display of peptides and proteins, Academic Press, pp. 227-253.

  • Strauß M., Kauder, F., Peisker, M., Sonnewald, U., Conrad, U. and Heineke, D. 2001. Expression of an abscisic acid-binding single-chain antibody influences the subcellular distribution of abscisic acid and leads to developmental changes in transgenic potato plants. Planta 213: 361–369.

    Google Scholar 

  • Tomlinson, I.M. and Holt, L.J. 2001. Protein profiling cones of age. Genome Biol. 2(2): 1004.1–1004.3.

    Google Scholar 

  • Truong, K. and Ikura, M. 2001. The use of FRET imaging microscopy to detect protein-protein interactions and protein conformational changes in vivo. Curr. Opin. Struct. Biol. 11: 573–578.

    Google Scholar 

  • Watters, J.M., Telleman, P. and Junghans, R.P. 1997. An optimised method for cell based phage display panning. Immunotechnology 3: 21–29.

    Google Scholar 

  • Whaley, S.R., English, D.S., Hu, E.L., Barbara, P.F. and Belcher, A.M. 2000. Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature 405: 665–668.

    Google Scholar 

  • Willats, W.G.T., Gilmartin, P.M., Mikkelsen, J.D. and Knox, J.P. 1999. Cell wall antibodies without immunisation: generation of and use of de-esterified homogalacturonan block-specific antibodies from a naïve phage display library. Plant J. 18: 57–65.

    Google Scholar 

  • Willats, W.G.T., Rasmussen, S.E., Kristensen, T., Mikkelsen, J.D. and Knox, J.P. 2002a. Sugar-coated microarrays: a novel slide surface for the high throughput analysis of glycans. Proteomics 2(12): in press.

  • Willats, W.G.T., Steele-King, C.G. and Knox, J.P. 2002b. Antibody techniques. In: P. Gilmartin and C. Bowler (eds.), Molecular Plant Biology: a practical approach, Oxford University Press, Oxford, U.K.

    Google Scholar 

  • Willats, W.G.T., Steele-King, C.G., McCartney, L., Orfila, C., Marcus, S.E. and Knox, J.P. 2000. Making and using antibody probes to study plant cell walls. Plant Physiol. Biochem. 38(1-2): 27–36.

    Google Scholar 

  • Williams, M.N., Freshour, G., Darvill, A.G., Albersheim, P. and Hahn, M.G. 1996. An antibody Fab selected from a recombinant phage display library detects deesterified pectic polysaccharide rhamnogalacturonan II in plant cells. Plant Cell 8: 673–685.

    Google Scholar 

  • Wilson, D.S. and Nock, S. 2001. Functional protein microarrays. Curr. Opin. Chem. Biol. 6: 81–85.

    Google Scholar 

  • Winter, G. 1998a. Synthetic human antibodies and a strategy for protein engineering. FEBS Lett. 430: 92–94.

    Google Scholar 

  • Winter, G. 1998b. Making antibody and peptide ligands by repertoire selection technologies. J. Mol. Recogn. 11: 126–127.

    Google Scholar 

  • Winter, G., Griffiths, A.D., Hawkins, R.E. and Hoogenboom, H.R. 1994. Making antibodies by phage display technology. Annu. Rev. Immunol. 12: 433–455.

    Google Scholar 

  • Uetz, P. 2001. Two-hybrid arrays. Curr. Opin. Chem. Biol. 6: 57–62.

    Google Scholar 

  • Zucconi, A., Dente, L., Santonico, E., Castagnoli, L. and Cesareni, G. 2001. Selection of lgands by panning of domain libraries displayed on phage lambda reveals new potential partners of synaptojanin 1. J. Mol. Biol. 307: 1329–1339.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willats, W.G. Phage display: practicalities and prospects. Plant Mol Biol 50, 837–854 (2002). https://doi.org/10.1023/A:1021215516430

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021215516430

Navigation