Skip to main content
Log in

Diffusion Snakes: Introducing Statistical Shape Knowledge into the Mumford-Shah Functional

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

We present a modification of the Mumford-Shah functional and its cartoon limit which facilitates the incorporation of a statistical prior on the shape of the segmenting contour. By minimizing a single energy functional, we obtain a segmentation process which maximizes both the grey value homogeneity in the separated regions and the similarity of the contour with respect to a set of training shapes. We propose a closed-form, parameter-free solution for incorporating invariance with respect to similarity transformations in the variational framework. We show segmentation results on artificial and real-world images with and without prior shape information. In the cases of noise, occlusion or strongly cluttered background the shape prior significantly improves segmentation. Finally we compare our results to those obtained by a level set implementation of geodesic active contours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alcouffe, R.E., Brandt, A., Dendy, Jr.,J.E., and Painter, J.W. 1981. The multi-grid method for the diffusion equation with strongly discontinuous coefficients. SIAM J.Sci.Stat.Comp., 2(4):430–454.

    Google Scholar 

  • Blake, A. and Isard, M. 1998. Active Contours, Springer: London.

    Google Scholar 

  • Briggs, W.L., Henson, V.E., and McCormick, S.F. 2000. A Multigrid Tutorial, 2nd edn. SIAM: Philadelphia.

    Google Scholar 

  • Caselles, V., Kimmel, R., and Sapiro, G. 1995. Geodesic active contours. In Proc.IEEE Internat.Conf.on Comp.Vis., Boston, USA, pp. 694–699.

  • Chan, T. and Vese, L. 2001. A level set algorithm for minimizing the Mumford-Shah functional in image processing. In IEEE Workshop on Variational and Level Set Methods, Vancouver, CA, pp. 161–168.

  • Chen, Y., Thiruvenkadam, S., Tagare, H., Huang, F., Wilson, D., and Geiser, E. 2001. On the incorporation of shape priors into geometric active contours. In IEEE Workshop on Variational and Level Set Methods, Vancouver, CA, pp. 145–152.

  • Cootes, T.F., Taylor, C.J., Cooper, D.M., and Graham, J. 1995. Active shape models—their training and application. Comp.Vision Image Underst., 61(1):38–59.

    Google Scholar 

  • Cremers, D., Kohlberger, T., and Schnörr, C. 2002. Nonlinear shape statistics in Mumford-Shah based segmentation. In Proc.of the Europ.Conf.on Comp.Vis., Copenhagen, A. Heyden et al. (Eds.), vol. 2351 of LNCS. Springer: Berlin, pp. 93–108.

    Google Scholar 

  • Cremers, D. and Schnärr, C. 2002. Motion competition: Variational integration of motion segmentation and shape regularization. In Pattern Recognition, L. van Gool (Ed.), Zürich, LNCS, Springer: Berlin.

    Google Scholar 

  • Cremers, D., Schnörr, C., and Weickert, J. 2001. Diffusion snakes: Combining statistical shape knowledge and image information in a variational framework. In IEEE First Workshop on Variational and Level Set Methods, Vancouver, pp. 137–144.

  • Cremers, D., Schnörr, C., Weickert, J., and Schellewald, C. 2000. Diffusion snakes using statistical shape knowledge. In Alge-braic Frames for the Perception-Action Cycle, G. Sommer and Y.Y. Zeevi (Eds.), vol. 1888 of LNCS, pp. 164–174. Springer: Berlin.

    Google Scholar 

  • Dendy, J.E. 1982. Black box multigrid. J.Comp.Phys., 48:366–386.

    Google Scholar 

  • Dryden, I.L. and Mardia, K.V. 1998. Statistical Shape Analysis. Wiley: Chichester.

    Google Scholar 

  • Farin, G. 1997. Curves and Surfaces for Computer–Aided Geometric Design. Academic Press: San Diego, CA.

    Google Scholar 

  • Goodall, C. 1991. Procrustes methods in the statistical analysis of shape. J.Roy.Statist.Soc., Ser.B., 53(2):285–339.

    Google Scholar 

  • Grenander, U., Chow, Y., and Keenan, D.M. 1991. Hands: A Pattern Theoretic Study of Biological Shapes. Springer: New York.

    Google Scholar 

  • Kass, M., Witkin, A., and Terzopoulos, D. 1988. Snakes: Active contour models. Int.J.of Comp.Vis., 1(4):321–331.

    Google Scholar 

  • Kervrann, C. 1995. Modèles statistiques pour la segmentation et le suivi de structures déformables bidimensionnelles dans une séquence d'images. Ph.D. Thesis, Université de Rennes I, France.

    Google Scholar 

  • Kervrann, C. and Heitz, F. 1999. Statistical deformable model-based segmentation of image motion. IEEE Trans.on Image Processing, 8:583–588.

    Google Scholar 

  • Kichenassamy, S., Kumar, A., Olver, P.J., Tannenbaum, A., and Yezzi, A.J. 1995. Gradient flows and geometric active contour models. In Proc.IEEE Internat.Conf.on Comp.Vis., Boston, USA, pp. 810–815.

  • Leventon, M.E., Grimson, W.E.L., and Faugeras, O. 2000. Statistical shape influence in geodesic active contours. In Proc.Conf.Computer Vis.and Pattern Recog., Hilton Head Island, SC, vol. 1, pp. 316–323. June 13–15.

    Google Scholar 

  • Mantegazza, C. 1993. Su Alcune Definizioni Deboli di Curvatura per Insiemi Non Orientati. Ph.D. Thesis, Dept. of Mathematics, SNS Pisa, Italy.

    Google Scholar 

  • Moghaddam, B. and Pentland, A. 1995. Probabilistic visual learning for object detection. In Proc.IEEE Internat.Conf.on Comp.Vis., pp. 786–793.

  • Morel, J.-M. and Solimini, S. 1988. Segmentation of images by variational methods: A constructive approach. Revista Matematica de la Universidad Complutense de Madrid, 1(1–3):169–182.

    Google Scholar 

  • Mumford, D. and Shah, J. 1989. Optimal approximations by piecewise smooth functions and associated variational problems. Comm.Pure Appl.Math., 42:577–685.

    Google Scholar 

  • Paragios, N. and Deriche, R. 2000. Coupled geodesic active regions for image segmentation: a level set approach. In ECCV, D. Vernon (Ed.), vol. 1843 of LNCS, Springer: Berlin, pp. 224–240.

    Google Scholar 

  • Roweis., S. EM algorithms for PCA and SPCA. 1998. In Advances in Neural Information Processing Systems 10, M. Jordan, M. Kearns, and S. Solla (Eds.), MIT Press: Cambridge, MA, pp. 626–632.

    Google Scholar 

  • Terzopoulos, D. 1983. Multilevel computational processes for visual surface reconstruction. Comp.Vis., Graph., and Imag.Proc., 24:52–96.

    Google Scholar 

  • Tipping, M.E. and Bishop, C.M. 1997. Probabilistic principal component analysis. Neural Computing Research Group, Aston University, UK, Technical Report Woe-19.

    Google Scholar 

  • Tischhäuser, F. 2001. Development of a multigrid algorithm for diffusion snakes. Diploma thesis Department of Mathematics and Computer Science, University of Mannheim, Mannheim, Germany (in German).

    Google Scholar 

  • Wang, Y. and Staib, L.H. 1998. Boundary finding with correspondence using statistical shape models. In Proc.Conf.Computer Vis.and Pattern Recog., Santa Barbara, CA, pp. 338–345.

  • Weickert, J. 2001. Applications of nonlinear diffusion filtering in image processing and computer vision. Acta Mathematica Universitatis Comenianae, LXX(1):33–50.

    Google Scholar 

  • Werman, M. and Weinshall, D. 1995. Similarity and affine invariant distances between 2d point sets. IEEE Trans.on Patt.Anal.and Mach.Intell., 17(8):810–814.

    Google Scholar 

  • Wesseling, P. 1992. An Introduction to Multigrid Methods. John Wiley: Chichester.

    Google Scholar 

  • Yezzi, A., Soatto, S., Tsai, A., and Willsky, A. 2002. The Mumford-Shah functional: From segmentation to stereo. Mathematics and Multimedia.

  • de Zeeuw, P.M. 1990. Matrix-dependent prolongations and restrictions in a blackbox multigrid solver. J.Comp.Appl.Math., 33:1–27.

    Google Scholar 

  • Zhu, S.C. and Mumford, D. 1997. Prior learning and Gibbs reaction–diffusion. IEEE Trans.on Patt.Anal.and Mach.Intell., 19(11):1236–1250.

    Google Scholar 

  • Zhu, S.C. and Yuille, A. 1996. Region competition: Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Trans.on Patt.Anal.and Mach.Intell., 18(9):884–900.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cremers, D., Tischhäuser, F., Weickert, J. et al. Diffusion Snakes: Introducing Statistical Shape Knowledge into the Mumford-Shah Functional. International Journal of Computer Vision 50, 295–313 (2002). https://doi.org/10.1023/A:1020826424915

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020826424915

Navigation