Skip to main content
Log in

Cyclodextrins: Their Future in Drug Formulation and Delivery

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Since their discovery, cyclodextrins and their ability to form inclusion complexes have fascinated chemists, formulators and recently, entrepreneurs. This mini-review has as its objective, a critical assessment of the current status of cyclodextrins in the formulation and delivery of pharmaceuticals and commentary on their potential future uses. The emphasis will be on answers to common questions often asked of pharmaceutical scientists working in this area. Why use cyclodextrins for drug solubilization and stabilization when alternative techniques are available? Why the greater interest in modified cyclodextrins and not the parent cyclodextrins? If a drug forms a strong cyclodextrin inclusion complex, how is the drug releasedin vivo? Does the injection of a cyclodextrin/drug complex alter the pharmacokinetics of the drug? Are there drug products on the market which contain cyclodextrins? What is the regulatory status of cyclodextrins? Although definitive answers to all these questions are not possible at this time, many of these questions are answerable, and educated and informed responses are possible for the rest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCE

  1. T. Loftsson and M. Brewster. Pharmaceutical applications of cyclodextrins. I. Drug solubilization and stabilization. J. Pharm. Sci. 85:1017–1025 (1996).

    Article  PubMed  Google Scholar 

  2. T. Irie and K. Uekama. Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation. J. Pharm. Sci. 86:147–162 (1997).

    PubMed  Google Scholar 

  3. K. Frömming and J. Szejtli. Cyclodextrins in Pharmacy; Kluwer Acad. Publ., Dordrecht, 1994.

    Google Scholar 

  4. J. Szejtli. Cyclodextrin Technology; J.E.D. Davies (series ed.), Kluwer Acad.; Dordrecht, 1988.

    Google Scholar 

  5. Cyclodextrins and their Industrial Uses, D. Duchêne (ed.), Editions de Santé, Paris, 1987.

    Google Scholar 

  6. T. Loftsson. Effects of cyclodextrins on the chemical stability of drugs in aqueous solutions. Drug Stab. 1:22–33 (1995).

    Google Scholar 

  7. H. Van Doorne. Interactions between cyclodextrins and ophthalmic drugs. Eur. J. Pharm. Biopharm. 39:133–139 (1993).

    Google Scholar 

  8. R. A. Rajewski and V. J. Stella. Pharmaceutical applications of cyclodextrins. II. In vivo drug delivery. J. Pharm. Sci. 85:1142–1169 (1996).

    PubMed  Google Scholar 

  9. D. O. Thompson. Cyclodextrins—enabling excipients: Their present and future use in pharmaceuticals. In S. Bruck (ed.), Critical Reviews in Drug Carrier Systems, CRC Press, (1997), in press.

  10. K. Uekama, F. Hirayama, and T. Irie. Application of cyclodextrins in pharmaceutical preparations. Drug Targeting Delivery 3:411–456 (1994).

    Google Scholar 

  11. A. Hersey, B. H. Robinson, and H. C. Kelly. Mechanisms of inclusion-compound formation for binding of organic dyes, ions and surfactants to alpha-cyclodextrin studied by kinetic methods based on competition experiments. J. Chem. Soc. Faraday Trans. I 82:1271–1287 (1986).

    Google Scholar 

  12. F. Cramer, W. Saenger, and H. C. Spatz. Inclusion compounds. XIX. The formation of inclusion compounds of α-cyclodextrin in aqueous solutions. Thermodynamics and kinetics. J. Am. Chem. Soc. 89:14–20 (1967).

    Google Scholar 

  13. H. W. Frijlink, E. J. F. Franssen, A. C. Eissens, R. Oosting, C. F. Lerk, and D. K. F. Meijer. The effects of cyclodextrins on the disposition of intravenously injected drugs in the rat. Pharm. Res. 8:380–384 (1991).

    PubMed  Google Scholar 

  14. D. W. Frank, J. E. Gray, and R. N. Weaver, Cyclodextrin nephrosis in the rat. Am. J. Pathol. 83:367–382 (1976).

    PubMed  Google Scholar 

  15. R. A. Rajewski, G. Traiger, J. Bresnahan, P. Jaberaboansari, V. J. Stella, and D. O. Thompson. Preliminary safety evaluation of parenterally administered sulfoalkyl ether β-cyclodextrin derivatives. J. Pharm. Sci. 84:927–932 (1995).

    PubMed  Google Scholar 

  16. G. Antlsperger and G. Schmid. Toxicological Comparison of Cyclodextrins. In Proceedings of the 8th International Symposium on Cyclodextrins, Kluwer Academic Publishers, Dordrecht, 1996, pp. 149–155.

    Google Scholar 

  17. B. W. Müller and U. Brauns. Hydroxypropyl-β-cyclodextrin derivatives: influence of average degree of substitution on complexing ability and surface activity. J. Pharm. Sci. 75:571–572 (1986).

    PubMed  Google Scholar 

  18. C. T. Rao, J. Pitha, B. Lindberg, and J. Lindberg. Distribution of substituents in O-(2-hydroxypropyl) derivatives of cyclomalto-oligosaccharides (cyclodextrins): influence of increasing substitution, of the base used in the preparation, and of macrocyclic size. Carbohydr. Res. 223:99–107 (1992).

    PubMed  Google Scholar 

  19. J. Pitha. Amorphous water-soluble derivatives of cyclodextrins: from test tube to patient. J. Controlled Release 6:309–313 (1987).

    Google Scholar 

  20. V. Zia, R. Rajewski, E. R. Bornancini, E. A. Luna, and V. J. Stella. Effect of alkyl chain length and degree of substitution on the complexation of sulfoalkyl ether β-cyclodextrins with steroids. J. Pharm. Sci. 86:220–224 (1997).

    PubMed  Google Scholar 

  21. W. Löscher, D. Hoenack, A. Richter, H. Schulz, M. Schuerer, R. Duesing, and M. E. Brewster. New injectable aqueous carbamazepine solution through complexing with 2-hydroxypropyl-β-cyclodextrin: Tolerability and pharmacokinetics after intravenous injection in comparison to a glycofurol-based formulation. Epilepsia (N. Y.). 36:255–261 (1995).

    Google Scholar 

  22. K. Arimori, R. Iwaoku, M. Nakano, Y. Uemura, M. Otagiri, and K. Uekama. Improvement of some pharmaceutical properties of thiopental by γ-cyclodextrin complexation. Yakugaku Zasshi 103:553–558 (1983).

    PubMed  Google Scholar 

  23. H. Viernstein, C. Stumpf, P. Spiegl, and S. Reiter. Preparation and central action of propofol/hydroxypropyl-β-cyclodextrin complexes in rabbits. Arzneim-Forsch. 43:818–821 (1993).

    Google Scholar 

  24. H. Viernstein, C. Stumpf, and S. Reiter. Intravenous anesthesia with isoflurane in the rabbit. Pharm. Pharmacol. Lett. 3:165–168 (1994).

    Google Scholar 

  25. M. E. Brewster, W. R. Anderson, T. Loftsson, M. Huang, N. Bodor, and E. Pop. Preparation, characterization and anesthetic properties of 2-hydroxypropyl-β-cyclodextrin complexes of pregnanolone and pregnenolone in rat and mouse. J. Pharm. Sci. 84:1154–1159 (1995).

    PubMed  Google Scholar 

  26. A. Doenicke, M. F. Roizen, A.E. Nebauer, A. Kugler, R. Hoernecke, and H. Beger-Hintzen. A comparison of two formulations for etomidate, 2-hydroxypropyl-β-cyclodextrin (HPCD) and propylene glycol. Anesth. Analg. (N. Y.) 79:933–939 (1994).

    Google Scholar 

  27. K. Arimori and K. Uekama. Effects of β-and γ-cyclodextrins on the pharmacokinetic behavior of prednisolone after intravenous and intramuscular administrations to rabbits. J. Pharmacobio-Dyn. 10:390–395 (1987).

    PubMed  Google Scholar 

  28. K. Dietzel, K. S. Estes, M. E. Brewster, N. S. Bodor, and H. Derendorf. The use of 2-hydroxypropyl-β-cyclodextrin as a vehicle for intravenous administration of dexamethasone in dogs. Int. J. Pharm. 59:225–230 (1990).

    Google Scholar 

  29. V. J. Stella, H. K. Lee, and D. O. Thompson. The effect of SBE4-β-CD on i.v. methylprednisolone pharmacokinetics in rats: Comparison to a co-solvent solution and two water-soluble prodrugs. Int. J. Pharm. 120:189–195 (1995).

    Google Scholar 

  30. T. Järvinen, K. Järvinen, N. Schwarting, and V. J. Stella. β-Cyclodextrin derivatives, SBE4-CD and HP-CD, increase the oral bioavailability of cinnarizine in beagle dogs. J. Pharm. Sci. 84:295–299 (1995).

    PubMed  Google Scholar 

  31. V. J. Stella, H. K. Lee, and D. O. Thompson. The effect of SBE4-β-CD on i.m. prednisolone pharmacokinetics and tissue damage in rabbits: Comparison to a co-solvent solution and a water-soluble prodrug. Int. J. Pharm. 120:197–204 (1995).

    Article  Google Scholar 

  32. R. Panini, M. A. Vandelli, F. Forni, J. M. Pradelli, and G. Salvioli. Improvement of ursodeoxycholic acid bioavailability by 2-hydroxypropyl-β-cyclodextrin complexation in healthy volunteers. Pharmacol. Res. 31:205–209 (1995).

    Article  PubMed  Google Scholar 

  33. S. D. Studenberg, A. K. Roy, and J. L. Woolley. Comparative pharmacokinetic and bioavailability studies of atovaquone in dogs. 1. Cyclodextrin complexation. Pharm. Res. 13:S-457 (1996).

    Google Scholar 

  34. B. Haeberlin, T. Gengenbacher, A. Meinzer, and G. Fricker. Cyclodextrins—useful excipients for oral peptide administration? Int. J. Pharm. 137:103–110 (1996).

    Article  Google Scholar 

  35. K. Uekama, T. Horikawa, Y. Horiuchi, and F. Hirayama. In vitro and in vivo evaluation of delayed-release behavior of diltiazem from its O-carboxymethyl-O-ethyl β-cyclodextrin complex. J. Controlled Release 25:99–106 (1993).

    Article  Google Scholar 

  36. T. Horikawa, F. Hirayama, and K. Uekama. In vivo and in vitro correlation for delayed-release behavior of a molsidomine/O-carboxymethyl-O-ethyl-β-cyclodextrin complex in gastric acidity-controlled dogs. J. Pharm. Pharmacol. 47:124–127 (1995).

    PubMed  Google Scholar 

  37. T. Jansen, B. Xhonneux, J. Mesens, and M. Borgers. β-Cyclodextrins as vehicles in eye-drop formulations: an evaluation of their effects on rabbit corneal epithelium. Lens Eye Toxic. Res. 7:459–468 (1990).

    PubMed  Google Scholar 

  38. K. Järvinen, T. Järvinen, D. O. Thompson, and V. J. Stella. The effect of a modified β-cyclodextrin, SBE4-β-CD, on the aqueous stability and ocular absorption of pilocarpine. Curr. Eye Res. 13:897–905 (1994).

    PubMed  Google Scholar 

  39. K. A. Freedman, J. W. Klein, and C. E. Crosson, β-Cyclodextrins enhance availability of pilocarpine. Curr. Eye Res. 12:641–647 (1993).

    PubMed  Google Scholar 

  40. O. Reer, T. K. Bock, and B. W. Müller. In vitro corneal permeability of diclofenac sodium in formulations containing cyclodextrins compared to the commercial product Voltaren Ophtha. J. Pharm. Sci. 83:1345–1349 (1994).

    PubMed  Google Scholar 

  41. T. Takano, C. Kobayashi, R. M. Alba, and A. Kanai. The immunosuppresive effects of 0.025% cyclosporin eye drops in α-cyclodextrin on rabbit corneal allografts. Nippon Ganka Gakkai Zasshi 96:834–40 (1992).

    PubMed  Google Scholar 

  42. A. Usayapant, A. H. Karara, and M. M. Narurkar. Effect of 2-hydroxypropyl-β-cyclodextrin on the ocular absorption of dexamethasone and dexamethasone acetate. Pharm. Res. 8:1495–1499 (1991).

    Article  PubMed  Google Scholar 

  43. T. Loftsson, H. Fridriksdóttir, S. Thórisdóttir, and E. Stefánsson. The effect of hydroxypropyl methyl cellulose on the release of dexamethasone from aqueous 2-hydroxypropyl-β-cyclodextrin formulations. Int. J. Pharm. 104:181–184 (1994).

    Article  Google Scholar 

  44. T. Loftsson, H. Fridriksdóttir, E. Stefánsson, S. Thórisdóttir, O. Guómundsson, and T. Sigthórsson. Topically effective ocular hypotensive acetazolamide and ethoxyzolamide formulations in rabbits. J. Pharm. Pharmacol. 46:503–504 (1994).

    PubMed  Google Scholar 

  45. D. W. Pate, K. Järvinen, A. Urtti, P. Jarho, and T. Järvinen. Ophthalmic arachidonylethanolamide decreases intraocular pressure in normotensive rabbits. Curr. Eye Res. 14:791–797 (1995).

    PubMed  Google Scholar 

  46. T. Järvinen, K. Järvinen, A. Urtti, D. Thompson, and V. J. Stella. Sulfobutyl ether β-cyclodextrin (SBE-β-CD) in eyedrops improves the tolerability of a topically applied pilocarpine prodrug in rabbits. J. Ocul. Pharmacol. Ther. 11:95–106 (1995).

    PubMed  Google Scholar 

  47. P. Jarho, K. Järvinen, A. Urtti, V. J. Stella, and T. Järvinen. Modified β-cyclodextrin (SBE7-β-CD) with viscous vehicle improves the ocular delivery and tolerability of pilocarpine prodrug in rabbits. J. Pharm. Pharmacol. 48:263–269 (1996).

    PubMed  Google Scholar 

  48. E. Marttin, J. C. Verhoef, S. G. Romeijn, and F. W. H. Merkus. Effects of absorption enhancers on rat nasal epithelium in vivo: release of marker compounds in the nasal cavity. Pharm. Res. 12:1151–1157 (1995).

    PubMed  Google Scholar 

  49. W. A. J. Hermens, C. W. J. Belder, J. M. W. Merkus, P. M. Hooymans, J. Verhoef, and F. W. H. Merkus. Intranasal administration of estradiol in combination with progesterone to oophorectomized women: a pilot study. European J. of Obstetrics and Gynecology and Reproductive Biology 43:65–70 (1992).

    Google Scholar 

  50. E. Marttin, J. C. Verhoff, S. G. Romeijn, and F. W. H. M. Merkus. Cyclodextrins in nasal drug delivery: Trends and perspectives. In Proceedings of the 8th International Symposium on Cyclodextrins, Kluwer Academic Publishers, Dordrecht, 1996, pp. 381–386.

    Google Scholar 

  51. S. Hirai. Formulation studies of cefotiam hexetil hydrochloride: Effect of α-cyclodextrin as dissolution enhancer. In T. Osa (ed.), Proceedings of the 7th International Symposium on Cyclodextrins, Business Center of Academic Societies Japan, Tokyo, 1994, pp. 39–44.

    Google Scholar 

  52. P. Putteman, W. Caers, J. Mesens, and J. Peeters. Recent topics with regard to the use of EcapsinTM HPB, hydroxypropyl-β-cyclodextrin, in galenical development. In The 8th International Cyclodextrins Symposium, Programme and Abstracts, 1996, pp. 3–03.

  53. G. Schmid. Preparation and application of γ-cyclodextrin. In D. Duchêne (ed.), New Trends in Cyclodextrins and Derivatives, Editions de Santé, Paris, 1991, pp. 27–54.

    Google Scholar 

  54. J. Serfõzõ, P. Szabo, T. Ferenczy, and A. Tôth-Jakab. Renal effects of parenterally administered methylated cyclodextrins on rabbits. In J. Szejtli (ed.), Proceedings of the 1st International Symposium on Cyclodextrins, Kluwer Academic Publishers, Dordrecht, 1982, pp. 407–413.

    Google Scholar 

  55. S. C. Szathmary, K. U. Seiler, I. Luhmann, and H. J. Huss. Pharmacokinetic behavior and absolute bioavailability of hydroxypropyl β-cyclodextrin after increasing doses in volunteers. In D. Duchêne (ed.), Minutes of the 5th International Symposium on Cyclodextrins, Editions de Santé, Paris, 1990, pp. 535–540.

    Google Scholar 

  56. W. Coussement, H. Van Cauteren, J. Vandenberghe, P. Vanparys, G. Teuns, A. Lampo, and R. Marsboom. Toxicological profile of hydroxypropyl β-cyclodextrin (HP β-CD) in laboratory animals. In D. Duchêne (ed.), Minutes of the 5th International Symposium on Cyclodextrins, Editions de Santé, Paris, 1990, pp. 522–524.

    Google Scholar 

  57. K. U. Seiler, S. Szasthmary, H. J. Huss, R. De Coster, and W. Junge. Safety profile and intravenous tolerance of hydroxypropyl β-cyclodextrin after increasing single dose. In D. Duchêne (ed.), Minutes of the 5th International Symposium on Cyclodextrins, Editions de Santé, Paris, 1990, pp. 518–521.

    Google Scholar 

  58. P. Olivier, F. Verwaerde, and A. R. Hedges. Subchronic toxicity of orally administered β-cyclodextrin in rats. J. Am. Coll. Toxicol. 10:407–419 (1991).

    Google Scholar 

  59. A. Gerlóczy, A. Fónagy, P. Keresztes, L. Perlaky, and J. Szejtli. Absorption, distribution, excretion and metabolism of orally administered 14C-β-cyclodextrin in rat. Arzeeim.-Forsch. 35:1042–1047 (1985).

    Google Scholar 

  60. P. Szabo, T. Ferenczy, J. Serfõzõ, J. Szejtli, and A. Lipták. Absorption and elimination of cyclodextrin derivatives by rabbits and rats. In J. Szejtli (ed.), Proceedings of the 1st International Symposium on Cyclodextrins, Kluwer Academic Publishers, Dordrecht, 1982, pp. 115–122.

    Google Scholar 

  61. T. Irie, Y. Tsunenari, K. Uekama, and J. Pitha. Effect of bile on the intestinal absorption of α-cyclodextrin in rats. Int. J. Pharm. 43:41–44 (1988).

    Article  Google Scholar 

  62. R. N. Antenucci and J. K. Palmer. Enzymic degradation of α-and β-cyclodextrins by Bacteroides of human colon. J. Agric. Food Chem. 32:1316–1321 (1984).

    Google Scholar 

  63. M. Suzuki and A. Sato. Nutritional significance of cyclodextrins: indigestibility and hypolipemic effect of α-cyclodextrin. J. Nutr. Sci. Vitaminol. 31:209–223 (1985).

    PubMed  Google Scholar 

  64. M. E. Bellringer, T. G. Smith, R. Read, C. Gopinath, and P. Olivier. β-Cyclodextrin: 52-week toxicity studies in the rat and dog. Food Chem. Toxicol. 33:367–376 (1995).

    Article  PubMed  Google Scholar 

  65. I. Szatmári and Z. Vargay. Pharmacokinetics of dimethyl-β-cyclodextrin in rats. In D. Duchêne (ed.), Proceedings of the 4th International Symposium on Cyclodextrins, Kluwer Academic Publishers, Dordrecht, 1988, pp. 407–413.

    Google Scholar 

  66. J. Monbaliu, L. Van Beijsterveldt, W. Meuldermans, S. Szathmary, and J. Heykants. Disposition of hydroxypropyl β-cyclodextrin in experimental animals. In D. Duchêne (ed.), Minutes of the 5th International Symposium on Cyclodextrins, Editions de Santé, Paris, 1990, pp. 514–517.

    Google Scholar 

  67. H. Van Cauteren, A. Lampo, L. Lammens, H. Benze, W. Coussement, and J. Vandenberghe. Monitoring pharmacodynamic effects in toxicology studies. In A. Sundwall, B. Johansson, L. Lindbom, E. Lindgren, and P. Sjöberg (eds.), Workshop on the Use of Pharmacology Studies in Drug Safety Assessment—Present Situation and Future Perspectives, (1994), pp. 101–106.

  68. M. Riottot, P. Olivier, A. Huet, J. J. Caboche, M. Parquet, J. Khallou, and C. Lutton. Hypolipidemic effects of β-cyclodextrin in the hamster and the genetically hypercholesterolemic Rico rat. Lipids 28:181–188 (1988).

    Google Scholar 

  69. K. Shiotani, K. Uehata, T. Irie, K. Uekama, D. O. Thompson, and V. J. Stella. Differential effects of sulfate and sulfobutyl ether of β-cyclodextrin on erythrocyte membranes in vitro. Pharm. Res. 12:78–84 (1995).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stella, V.J., Rajewski, R.A. Cyclodextrins: Their Future in Drug Formulation and Delivery. Pharm Res 14, 556–567 (1997). https://doi.org/10.1023/A:1012136608249

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012136608249

Navigation