Skip to main content
Log in

The Role of Dielectric Barrier Discharge Atmosphere and Physics on Polypropylene Surface Treatment

  • Published:
Plasmas and Polymers

Abstract

Dielectric barrier discharge (DBD) is the discharge involved in corona treatment, widely used in industry to increase the wettability or the adhesion of polymer films or fibers. Usually DBD's are filamentary discharges but recently a homogeneous glow DBD has been obtained. The aim of this paper is to compare polypropylene surface transformations realized with filamentary and glow DBD in different atmospheres (He, N2, N2 + O2 mixtures) and to determine the relative influence of both the discharge regime and the gas nature, on the polypropylene surface transformations. From wettability and XPS results it is shown that the discharge regime can have a significant effect on the surface transformations, because it changes both the ratio of electrons to gas metastables, and the space distribution of the plasma active species. This last parameter is important at atmospheric pressure because the mean free paths are short (∼μm). These two points explain why in He, polypropylene wettability increase is greater by a glow DBD than by a filamentary DBD. In N2, no significant effect of the discharge regime is observed because electrons and metastables lead to the same active species throughout the gas bulk. The specificity of a DBD in N2 atmosphere compared to an atmosphere containing oxygen is that it allows very extensive surface transformations and a greater increase of the polypropylene surface wettability. Indeed, even in low concentration and independently of the discharge regime, when O2 is present in the plasma gas, it controls the surface chemistry and degradation occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. Meiners, J. G. H. Salge, E. Prinz, and F. Forster, Surf. Coating Technol. 98, 1121 (1998).

    Google Scholar 

  2. M. Kogoma and S. Okazaki, J. Phys. D: Appl. Phys. 27, 1985 (1994).

    Google Scholar 

  3. U. Kogelschatz, Seventh Int'l. Symp. on High Pressure Low Temp. Plasma Chem, HAKONE VII, Greifswald (2000), p. 1.

  4. F. Massines, A. Rabehi, Ph. Decomps, R. Ben Gadri, P S´egur, and Ch. Mayoux, J. Appl. Phys. 38, 2950 (1998).

    Google Scholar 

  5. N. Gherardi, G. Gouda, E. Gat, A. Ricard, and F. Massines, Plasma Sources Sci. Technol.9, 340 (2000).

    Google Scholar 

  6. R. J. Good, J. Adhesion Sci. Technol. 6, 1269 (1992).

    Google Scholar 

  7. Ph. Decomps, F. Massines, and C. Mayoux, Fourth Int'l. Symp. on High Pressure Low Temp. Plasma Chem. HAKONE VII, Bratislava (1993) p. 141.

  8. F. Massines and G. Gouda, J. Phys. D: Appl. Phys. 31, 3411 (1998).

    Google Scholar 

  9. N. Gherardi, E. Gat, G. Gouda, and F. Massines, Sixth Int'l. Symp. on High Pressure Low Temp. Plasma Chem. HAKONE VI, Cork (1998) p. 141.

  10. F. Massines, R. Messaoudi, and C. Mayoux, Plasmas Polymers 3, 1 (1998).

    Google Scholar 

  11. T. Yokoyama, M. Kogoma, T. Moriwaki, and S. Okazaki, J. Phys D: Appl. Phys. 23, 1125 (1990).

    Google Scholar 

  12. R. Ben Gadri, J. R. Roth, T. C. Montie, K. Kelly-Wintenberg, P. P. Y. Tsai, D. J. Helfritch, P. Feldman, D. M. Sherman, F. Karakaya, and Z. Chen, Surface Coating Technol. 131, 528 (2000).

    Google Scholar 

  13. R. Brandeburg, K. V. Kozlov, F. Massines, P. Michel, and H. E. Wagner, Seventh Int'l. Symp. on High Pressure Low Temp. Plasma Chem. HAKONE VII, Greifswald (2000) p. 93.

  14. E. Monette, R. Bartnikas, G. Czeremuszkin, M. Latreche, and M. R. Wertheimer, 14th Int'l. Symp. Plasma Chemistry, (ISPC 14), Prague (1999) p. 991.

  15. S. F. Miralai, E. Monette, R. Bartnikas, G. Czeremuszkin, M. Latreche, and M. R. Wertheimer, Plasmas and Polymers 5, 63 (2000).

    Google Scholar 

  16. E. Croquesel, N. Gherardi, S. Martin, and F. Massines, Seventh Int'l. Symp. on High Pressure Low Temp. Plasma Chem., HAKONE VII, Greifswald (2000) p. 88.

  17. S. F. Miralai, E. Monette, R. Bartnikas, G. Czeremuszkin, M. Latreche, and M. R. Wertheimer, Seventh Int'l. Symp. on High Pressure Low Temp. Plasma Chem., HAKONE VII, Greifswald (2000) p. 83.

  18. T. Uehara, Adhesion Promotion Techniques, Chap. 7, K. L. Mittal and A. Pizzi, eds., Marcel Dekker Inc., New York (1999) p. 191.

    Google Scholar 

  19. M. R. Wertheimer, L. Martinu, and E.M. Liston,Handbook of Thin Film Process Technology, Chap. 3, S. I. Shah and D. A. Glocker, eds., IOP Publishing Ltd, Bristol, (1996).

    Google Scholar 

  20. I. Sutherland, R. P. Popat, and M. Brewis,J. Adhesion 46, 78 (1994).

    Google Scholar 

  21. M. Strobel, C. Lyons, J. M. Strobel, and R. S. Kapaun, J. Adhesion Sci. Technol. 6, 429 (1992).

    Google Scholar 

  22. A. R. Blythe, D. Briggs, C. R. Kendall, D. G. Rance, and V. J. I. Zichi, Polymer 19, 1273 (1978).

    Google Scholar 

  23. S. Vallon, R. Brenot, A. Hofrichter, B. Drevillon, A. Gheorghiu, C. Senemaud, J. E. Klemberg-Sapieha, L. Martinu, and F. Poncin-Epaillard, J. Adhesion Sci. Technol. 10, 1313 (1996).

    Google Scholar 

  24. P. N. Pokholak, P. M. Vohlyaev, O. N. Karpukhin, and S. D. Razumovskii, Vysokomol. Soedin. B11, 692 (1969).

    Google Scholar 

  25. M. K. Shi, J. Christoud, Y. Holl, and F. Clouet, J. Macromolecular Science, Pure and Appl. Chem. A30, 219 (1993).

    Google Scholar 

  26. P. Andersen and A.C. Luntz, J. Chem. Phys. 72, 5842 (1980).

    Google Scholar 

  27. F. Arefi-Khonsari, M. Tatoulian, N. Shahidzadeh, and J. Amouroux, Plasma Processing of Poly-mers, R. d'Agostino, P. Favia, and F. Fracassi, Kluwer Academic Publishers, Netherlands (1997) p. 165.

    Google Scholar 

  28. S. Dong, S. Sapieha, and H. P. Schreiber, Polym. Eng. Sci. 32, 1734 (1992).

    Google Scholar 

  29. F. Normand, A. Granier, P. Leprince, J. Marec, M. K. Shi, and F. Clouet, Plasma Chem. Plasma Process. 15, 2 (1995).

    Google Scholar 

  30. E. Marode, J. Appl. Phys. 46, 2005 (1975).

    Google Scholar 

  31. R. Foerch, G. Beamson, and D. Briggs, Tenth Int'l. Symp. Plasma Chemistry, ISPC 10, Bochum (1991) p. 2.5.2.

  32. F. Poncin Epaillard, B. Chevet, and J. C. Brosse, J. Adhesion Sci. Tech. 8, 455 (1994).

    Google Scholar 

  33. R. Morrow, and J. J. Lowke, J. Phys. D: Appl. Phys. 30, 614 (1997).

    Google Scholar 

  34. M. Tatoulian, F. Arefi-Khonsari, I. Mabille-Rouger, J. Amouroux, M. Gheorgiu, and D. Bouchier, J. Adhesion Sci. Technol. 9, 923 (1995).

    Google Scholar 

  35. H. Schonhorn and R. H. Hansen, J. Appl. Polym. Sci. 11, 1461 (1967).

    Google Scholar 

  36. M. Hudis, J. Appl. Polym. Sci. 16, 2397 (1972).

    Google Scholar 

  37. A. Ricard, Ph. Décomps, and F. Massines, Surface Coating Technol. 112, 1 (1999).

    Google Scholar 

  38. B. Eliasson, W. Egli, and U. Kogelschatz, Pure Appl. Chem. 66, 1275 (1994).

    Google Scholar 

  39. F. V. Lee and C. B. Collins, J. Chem. Phys. 65, 5189 (1976).

    Google Scholar 

  40. J. A. Palmer, Appl. Phys. Lett. 25, 138 (1974).

    Google Scholar 

  41. F. Massines, G. Gouda, N. Gherardi, and E. Croquesel, Seventh Int'l. Symp. on High Pressure LowTemp. Plasma Chem., HAKONE VII, Greifswald (2000) p.28.

  42. P. S´egur and F. Massines, Gazeous Discharge Conference, Glasgow (2000) p. 15.

  43. I. A. Kossyi, A. Y. Kostinsky, A. A Matveyev, and V. O. Silakov, Plasma Sources Sci. Technol.1, 207 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massines, F., Gouda, G., Gherardi, N. et al. The Role of Dielectric Barrier Discharge Atmosphere and Physics on Polypropylene Surface Treatment. Plasmas and Polymers 6, 35–49 (2001). https://doi.org/10.1023/A:1011365306501

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011365306501

Navigation