Skip to main content
Log in

Obtaining absorption spectra from individual macroalgal spores using microphotometry

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Information on the ecophysiology of macroalgal planktonic propagules (e.g. spores) has been hard to obtain, given their small size and low concentration in the water column. Studies of the photo-physiology of macroalgal spores, for example, have been limited by the need to aggregate many spores into bulk samples for analysis. Subsequently, physiological variability among spores (e.g. pigment concentration, absorption characteristics) is lost, and taxonomic comparisons from multi-taxa samples are impossible. Here we present a technique that utilizes a spectral microphotometer to produce visible (400-800 nm) absorption spectra from individual particles; the particles in our case are macroalgal spores. The microphotometer consists of a microscope fitted with a monochromator and spectrophotometer. After mounting spores from laboratory or field suspensions onto transparent membrane filters, absorption characteristics of individual spores, or even individual plastids, can be evaluate d independently from the remaining particles in the sample. Use of transparent rather than opaque membrane filters allows for determination of absorption spectra, as well as more traditional microscopic analyses (e.g. bright field, dark field, epi-fluorescence). Glutaraldehyde fixation and cold storage (−10 °C) were found to be appropriate for maintaining the integrity of absorption spectra for at least 3 days. To demonstrate the utility of microphotometry for macroalgal studies, absorption spectra were obtained and analyzed from spores of various kelps and filamentous red algae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amsler, C. D. & M. Neushul, 1991. Photosynthetic physiology and chemical composition of spores of the kelps Macrocystis pyrifera, Nereocystis luetkeana, Laminaria farlowii, and Pterygophora californica(Phaeophyceae). J. Phycol. 27: 26–34.

    Google Scholar 

  • Beach, K. S., C. M. Smith, T. Michael & H. Shin, 1995. Photosynthesis in reproductive unicells of Ulva fasciataand Enteromorpha flexuosa: implications for ecological success. Mar. Ecol. Prog. Ser. 125: 229–237.

    Google Scholar 

  • Bidigare, R. R., M. E. Ondrusek, M. C. Kennicutt II, R. Iturriaga, H. R. Harvey, R. R. Hoham & S. A. Macko, 1993. Evidence for a photoprotective function for secondary carotenoids of snow algae. J. Phycol. 29: 427–434.

    Google Scholar 

  • Brzezinski, M. A., D. C. Reed & C. D. Amsler, 1993. Neutral lipids as major storage products in zoospores of the giant kelp Macrocystis pyrifera(Phaeophyceae). J. Phycol. 29: 16–23.

    Google Scholar 

  • Carpenter, E. J., J. Chang & L. P. Shapiro, 1991. Green and blue fluorescing dinoflagellates in Bahamian waters. Mar. Biol. 108: 145–149.

    Google Scholar 

  • Carpenter, E. J., J. Chang, M. Cotrell, J. Schubauer, H. W. Paerl, B. M. Bebout & D. G. Capone, 1990. Re-evaluation of nitrogenase oxygen-protective mechanism in the planktonic marine cyanobacterium Trichodesmium. Mar. Ecol. Prog. Ser. 65: 151–158.

    Google Scholar 

  • Garbary, D. J., K. Y. Kim, T. Klinger & D. Duggins, 1999. Preliminary observations on the development of kelp gametophytes endophytic in red algae. Hydrobiologia, 398/399 (Dev. Hydrobiol. 137): 247–252.

    Google Scholar 

  • Grzymski, J., G. Johnsen & E. Sakshaug, 1997. The significance of intracellular self-shading on the biooptical properties of brown, red, and green macroalgae. J. Phycol. 33: 408–414.

    Google Scholar 

  • Henry, E. C. & K. M. Cole, 1982. Ultrastructure of swarmers in the Laminariales (Phaeophyceae). I. Zoospores. J. Phycol. 18: 550–569.

    Google Scholar 

  • Iturriaga, R. & D. A. Siegel, 1989. Microphotometric characterization of phytoplankton and detrital absorption properties of the Sargasso Sea. Limnol. Oceanogr. 34: 1706–1726.

    Google Scholar 

  • Iturriaga, R., B. G. Mitchell & D. A. Kiefer, 1988. Microphotometric analysis of individual particle absorption spectra. Limnol. Oceanogr. 33: 128–135.

    Google Scholar 

  • Jeffrey, S.W., R. F. C. Mantoura & S.W. Wright, 1997. Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO Publishing, Paris, 661 pp.

    Google Scholar 

  • Lobban, C. S. & P. J. Harrison, 1994. Seaweed ecology and physiology. Cambridge University Press, Cambridge, 366 pp.

    Google Scholar 

  • Madden, H. H., 1978. Comments on the Savitsky-Golay convolution method for least-squares fit smoothing and differentiation of digital data. Anal. Chem. 50: 1383–1386.

    Google Scholar 

  • Robinson, D. H., K. R. Arrigo, R. Iturriaga & C. W. Sullivan, 1995. Microalgal light-harvesting in extreme low-light environments in McMurdo Sound, Antarctica. J. Phycol. 31: 508–520.

    Google Scholar 

  • Rowan, K. S., 1989. Photosynthetic Pigments of Algae. Cambridge University Press, Cambridge, 334 pp.

    Google Scholar 

  • Savitsky, A. & M. J. E. Golay, 1964. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36: 1627–1639.

    Google Scholar 

  • Smith, C. M. & R. S. Alberte, 1994. Characterization of in vivoabsorption features of chlorophyte, phaeophyte and rhodophyte algal species. Mar. Biol. 118: 511–521.

    Google Scholar 

  • Steinier, J., Y. Termonia & J. Deltour, 1972. Comments on smoothing and differentiation of data by simplified least square procedures. Anal. Chem. 44: 1906–1909.

    Google Scholar 

  • Stephens, F. C., 1995. Variability of spectral absorption efficiency within living cells of Pyrocystis lunula(Dinophyta). Mar. Biol. 122: 325–331.

    Google Scholar 

  • Troussellier, M., C. Courties & S. Zettelmaier, 1995. Flow cytometric analysis of coastal lagoon bacterioplankton and picophytoplankton: fixation and storage effects. Estuar. coast. shelf Sci. 40: 621–633.

    Google Scholar 

  • Underwood, A. J., 1997. Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge, 504 pp.

    Google Scholar 

  • Vaulot, D., C. Courties & F. Partensky, 1989. A simple method to preserve oceanic phytoplankton for flow cytometric analysis. Cytometry 10: 629–635.

    Google Scholar 

  • Wilson, P. D. & S. R. Polo, 1981. Polynomial filters of any degree. J. opt. Soc. Am. 71: 599–603.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graham, M.H., Mitchell, B.G. Obtaining absorption spectra from individual macroalgal spores using microphotometry. Hydrobiologia 398, 231–239 (1999). https://doi.org/10.1023/A:1017009411367

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017009411367

Navigation