Skip to main content
Log in

Visualization of Prekinetochore Locus on the Centromeric Region of Highly Extended Chromatin Fibers: Does Kinetochore Autoantigen CENP-C Constitute a Kinetochore Organizing Center?

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Kinetochore is morphologically defined as a trilaminated, highly differentiated structure at the primary constriction of mitotic chromosomes. This subcellular organella is assumed to be composed of DNA and proteins. Immunoelectron microscopy has shown that centromere autoantigens CENP-C and CENP-B localize to the kinetochore inner plate and the underlying centromeric region respectively. We previously indicated that both are DNA-binding proteins that constitute centromeric heterochromatin throughout the cell cycle. Here, we tried to elucidate how these molecules are involved in the kinetochore/centromere organization in vivo by analyzing their morphological behavior in nuclei. Using immunofluorescence microscopy, we found that CENP-C remained as round discrete dots, whereas CENP-B displayed larger surrounding materials. To examine the CENP-C-binding locus on the genome, we prepared highly extended chromatin fibers and performed simultaneous immunofluorescence and fluorescence in situ hybridization. We obsreved that centromeric alphoid DNA, targeted by CENP-B, was highly dispersed, whereas the CENP-C antigen persisted as small dots well situated on the fibers. These features reminded us of the ‘ball and cup’ structure that had been presented for ‘prekinetochore’. We propose here that CENP-C constitutes a ‘kinetochore organizing center’ tightly associating with DNA, whereas CENP-B heterochromatin offers the solid support during kinetochore maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonacci R, Rocchi M, Archidiacono N, Baldini A (1995) Ordered mapping of three alpha satellite DNA subsets on human chromosome 22. Chrom Res 3: 124-127.

    Article  PubMed  CAS  Google Scholar 

  • Brenner S, Pepper D, Berns MW, Tan E, Brinkley BR (1981) Kinetochore structure, duplication, and distribution in mammalian cells: Analysis by human autoantibodies from scleroderma patients. J Cell Biol 91: 95-102.

    Article  PubMed  CAS  Google Scholar 

  • Choo KHA (1997) Centromere proteins of higher eukaryotes. In: The Centromere. Oxford University Press, pp 143-253.

  • Cooke CA, Bernat L, Earnshaw WC (1990) CENP-B: A major human centromere protein located beneath the kinetochore. J Cell Biol 110: 1475-1488.

    Article  PubMed  CAS  Google Scholar 

  • Cooke CA, Bazett-Jones DP, Earnshaw WC, Rattner JB (1993) Mapping DNA within the mammalian kinetochore. J Cell Biol 120: 1083-1091.

    Article  PubMed  CAS  Google Scholar 

  • Cooke CA, Schaar B, Yen TJ, Earnshaw WC (1997) Localization of CENP-E in the fibrous corona and outer plate of mammalian kinetochores from prometaphase through anaphase. Chromosoma 106: 446-455.

    Article  PubMed  CAS  Google Scholar 

  • Depinet TW, Zackowski JL, Earnshaw WC, Kaffe S, Sekhon GS, et al. (1997) Characterization of neo-centromeres in marker chromosomes lacking detectable alpha-satellite DNA. Hum Mol Genet 6: 1195-1204.

    Article  PubMed  CAS  Google Scholar 

  • Earnshaw WC, Ratrie H, Stetten G (1989) Visualization of centromere proteins CENP-B and CENP-C on a stable dicentric chromosome in cytological spreads. Chromosoma 98: 1-12.

    Article  PubMed  CAS  Google Scholar 

  • Haaf T, Ward DC (1994) Structural analysis of alpha-satellite DNA and centromere proteins using extended chromatin and chromosomes. Hum Mol Genet 3: 697-709.

    PubMed  CAS  Google Scholar 

  • He D and Brinkley BR (1996) Structure and dynamic organization of centromeres/prekinetochores in the nucleus of mammalian cells. J Cell Sci 109: 2693-2704.

    PubMed  CAS  Google Scholar 

  • Heneen WK (1975) Ultrastructure of the prophase kinetochore in cultured cells of rat-kangaroo (Potorous tridactylis). Hereditas 79: 209-220.

    Article  PubMed  CAS  Google Scholar 

  • Knehr M, Poppe M, Schroeter D, Eickelbaum W et al. (1996) Cellular expression of human centromere protein C demonstrates a cyclic behavior with highest abundance in the G1 phase. Proc Natl Acad Sci USA 93: 10234-10239.

    Article  PubMed  CAS  Google Scholar 

  • Liao H, Winkfein RJ, Mack G, Rattner JB, Yen TJ (1995) CENP-F is a protein of the nuclear matrix that assembles onto kinetochores at late G2 and is rapidly degraded after mitosis. J Cell Biol 130: 507-518.

    Article  PubMed  CAS  Google Scholar 

  • Masumoto H, Sugimoto K, Okazaki T (1989) Alphoid satellite DNA is tightly associated with centromere antigens in human chromosomes throughout the cell cycle. Exp Cell Res 181: 181-196.

    Article  PubMed  CAS  Google Scholar 

  • Moroi Y, Peebles C, Fritzler MJ, Steigerwald J, Tan EM (1980) Autoantibody to centromere (kinetochore) in scleroderma sera. Proc Natl Acad Sci USA 77: 1627-1631.

    Article  PubMed  CAS  Google Scholar 

  • Muro Y, Sugimoto K, Okazaki T, Ohashi M (1990) The heterogeneity of anticentromere antibodies in immunoblotting analysis. J Rheumatol 17: 1042-1047.

    PubMed  CAS  Google Scholar 

  • O'Keefe CL, Warburton PE, Matera AG (1996) Oligonucleotide probes for alpha satellite DNA variants can distinguish homologous chromosomes by FISH. Hum Mol Genet 5: 1793-1799.

    Article  PubMed  Google Scholar 

  • Parra I, Windle B (1993) High resolution visual mapping of stretched DNA by fluorescent hybridization. Nature Genet 5: 17-21.

    Article  PubMed  CAS  Google Scholar 

  • Rieder CL (1982) The formation, structure, and composition of the mammalian kinetochore and kinetochore fiber. Int Rev Cytol 79: 1-58.

    Article  PubMed  CAS  Google Scholar 

  • Ris H, Witt PL (1981) Structure of the mammalian kinetochore. Chromosoma 82: 153-170.

    Article  PubMed  CAS  Google Scholar 

  • Roos U-P (1973) Light and electron microscopy of rat kangaroo cells in mitosis. II. Kinetochore structure and function. Chromosoma 41: 195-220.

    Article  PubMed  CAS  Google Scholar 

  • Saitoh H, Tomkiel J, Cooke CA, Ratrie H III et al. (1992) CENPC, an autoantigen in scleroderma, is a component of the human inner kinetochore plate. Cell 70: 115-125.

    Article  PubMed  CAS  Google Scholar 

  • Shelby RD, Hahn KM, Sullivan KF (1996) Dynamic elastic behavior of α-satellite DNA domains visualized in situ in living human cells. J Cell Biol 135: 545-557.

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto K, Migita H, Hagishita Y, Yata H, Himeno M (1992a) An antigenic determinant on human centromere protein B (CENP-B) available for production of human-specific anticentromere antibodies in mouse. Cell Struct Funct 17: 129-138.

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto K, Muro Y, Himeno M (1992b) Anti-helix-loop-helix domain antibodies: Discovery of autoantibodies that inhibit DNA binding activity of human centromere protein B (CENP-B). J Biochem 111: 478-483.

    PubMed  CAS  Google Scholar 

  • Sugimoto K, Yata H, Muro Y, Himeno M (1994a) Human centromere protein C (CENP-C) is a DNA-binding protein which possesses a novel DNA-binding motif. J Biochem 116: 877-881.

    PubMed  CAS  Google Scholar 

  • Sugimoto K, Furukawa K, Himeno M (1994b) Functional cloning of centromere protein B (CENP-B) box-enriched alphoid DNA repeats utilizing the sequence-specific DNA binding activity of human CENP-B in vitro. Chrom Res 2: 453-459.

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto K, Hagishita Y, Himeno M (1994c) Functional domain structure of human centromere protein B: implication of the internal and C-terminal self-association domains in centromeric heterochromatin condensation. J Biol Chem 269: 24271-24276.

    PubMed  CAS  Google Scholar 

  • Sugimoto K, Yamada T, Muro Y, Himeno M (1996) Human homolog of Drosophila heterochromatin-associated protein 1 (HP1) is a DNA-binding protein which possesses a DNA-binding motif with weak similarity to that of human centromere protein C (CENP-C). J Biochem 120: 153-159.

    PubMed  CAS  Google Scholar 

  • Sugimoto K, Kuriyama K, Shibata A, Himeno M (1997a) Characterization of internal DNA-binding and C-terminal dimerization domains of human centromere/kinetochore autoantigen CENP-C in vitro: role of DNA-binding and self-associating activities in kinetochore organization. Chrom Res 5: 132-141.

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto K, Furukawa K, Kusumi K, Himeno M (1997b) The distribution of binding sites for centromere protein B (CENP-B) is partly conserved among diverged higher order repeating units of human chromosome 6-specific alphoid DNA. Chrom Res 5: 395-405.

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto K, Shibata A, Himeno M (1998) Nucleotide specificity at the boundary and size requirement of the target sites recognized by human centromere protein B (CENP-B) in vitro. Chrom Res 6: 133-140.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan BA, Schwartz S (1995) Identification of centromeric antigens in dicentric Robertsonian translocations: CENP-C and CENP-E are necessary components of functional centromeres. Hum Mol Genet 4: 2189-2197.

    PubMed  CAS  Google Scholar 

  • Tomkiel J, Cooke CA, Saitoh H, Bernat RL, Earnshaw WC (1994) CENP-C is required for maintaining proper kinetochore size and for a timely transition to anaphase. J Cell Biol 125: 531-545.

    Article  PubMed  CAS  Google Scholar 

  • Vig BK, Latour D, Brown M (1996) Localization of anti-CENP antibodies and alphoid sequences in acentric heterochromatin in a breast cancer cell line. Cancer Genet Cytogenet 88: 118-125.

    Article  PubMed  CAS  Google Scholar 

  • Warburton PE, Cooke CA, Bourassa S, Vafa O et al. (1997) Immunolocalization of CENP-A suggests a distinct nucleosome structure at the inner kinetochore plate of active centromeres. Curr Biol 7: 901-904.

    Article  PubMed  CAS  Google Scholar 

  • Willard HF, Wayes JS (1987) Hierarchical order in chromosome-specific human alpha satellite DNA. Trends Genet 3: 192-198.

    Article  CAS  Google Scholar 

  • Wood KW, Sakowicz R, Goldstein LSB, Cleveland DW (1997) CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment. Cell 91: 357-366.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugimoto, K., Tsutsui, M., AuCoin, D. et al. Visualization of Prekinetochore Locus on the Centromeric Region of Highly Extended Chromatin Fibers: Does Kinetochore Autoantigen CENP-C Constitute a Kinetochore Organizing Center?. Chromosome Res 7, 9–19 (1999). https://doi.org/10.1023/A:1009267010071

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009267010071

Navigation