Skip to main content
Log in

Quantitative approaches for analysing fluxes through plant metabolic networks using NMR and stable isotope labelling

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

The quantitative analysis of metabolic networks is a prerequisite for understanding the integration and regulation of plant metabolism and for devising rational approaches for manipulating resource allocation in plants. The analysis of steady state stable isotope labelling experiments using nuclear magnetic resonance (NMR) spectroscopy has developed into a powerful method for determining these fluxes in micro-organisms and its application to heterotrophic plant metabolism is increasing. After an introductory discussion of the well known role of stable isotopes in pathway delineation, the review considers their application to metabolic flux analysis in plants. These applications are divided into two groups – small scale analyses of fluxes through particular pathways and large scale analyses of multiple fluxes through metabolic networks – and the problems caused by the complexity of intermediary metabolism in plants are discussed. It is concluded that metabolic flux analysis provides a powerful method for defining the metabolic phenotype of wild type, mutant and transgenic plants and that its development should be pursued.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • ap Rees T & Hill SA (1994) Metabolic control analysis of plant metabolism. Plant Cell Environ. 17: 587–599.

    Google Scholar 

  • Aubert S, Bligny R, Douce R, Gout E, Ratcliffe RG & Roberts JKM (2001) Contribution of glutamate dehydrogenase to mitochondrial glutamate metabolism studied by 13C and 31P nuclear magnetic resonance. J. Exp. Bot. 52: 37–45.

    PubMed  Google Scholar 

  • Bacher A, Rieder C, Eichinger D, Arigoni D, Fuchs G & Eisenreich W (1999) Elucidation of novel biosynthetic pathways and metabolite flux patterns by retrobiosynthetic NMR analysis. FEMS Microbiol. Rev. 22: 567–598.

    Google Scholar 

  • Bago B, Pfeffer PE & Shachar-Hill Y (2000) Carbon metabolism and transport in arbuscular mycorrhiza. Plant Physiol. 124: 949–957.

    PubMed  Google Scholar 

  • Beevers H (1961) Respiratory Metabolism in Plants. Row, Peterson and Company, Evanston, Illinois.

    Google Scholar 

  • Bligny R & Douce R (2001) NMR and plant metabolism. Curr. Opin. Plant Biol. 4: 191–196.

    PubMed  Google Scholar 

  • Bonarius HPJ, Schmid G & Tramper J (1997) Flux analysis of underdetermined metabolic networks: the quest for the missing constraints. Trends Biotechnol. 15: 308–314.

    Google Scholar 

  • Christensen B & Nielsen J (1999) Isotopomer analysis using GCMS. Metab. Eng. 1: 282–290.

    PubMed  Google Scholar 

  • Christensen B & Nielsen J (2000) Metabolic network analysis: a powerful tool in metabolic engineering. In: Sonnleitner B (ed) Adv. Biochem. Eng. Biotechnol., Vol 66 (pp. 209–231). Springer Verlag, Berlin

    Google Scholar 

  • Cornish-Bowden A & Cárdenas ML (2000) From genome to cellular phenotype-a role for metabolic flux analysis? Nature Biotechnol. 18: 267–268.

    Google Scholar 

  • Dauner M, Bailey JE & Sauer U (2001) Metabolic flux analysis with a comprehensive isotopomer model in Bacillus subtilis. Biotechnol. Bioeng. 76: 144–156.

    PubMed  Google Scholar 

  • Day DA & Hanson JB (1977) Pyruvate and malate transport and oxidation in corn mitochondria. Plant Physiol. 59: 630–635.

    Google Scholar 

  • Debnam PM & Emes MJ (1999) Subcellular distribution of enzymes of the oxidative pentose phosphate pathway in root and leaf tissues. J. Exp. Bot. 50: 1653–1661.

    Google Scholar 

  • de Graaf AA, Striegel K, Wittig RM, Laufer B, Schmitz G, Wiechert W, Sprenger GA & Sahm H (1999) Metabolic state of Zymomonas mobilis in glucose-, fructose-and xylose-fed continuous cultures as analysed by 13C-and 31P-NMR spectroscopy. Arch. Microbiol. 171: 371–385.

    PubMed  Google Scholar 

  • Dieuaide-Noubhani M, Raffard G, Canioni P, Pradet A & Raymond P (1995) Quantification of compartmented metabolic fluxes in maize root tips using isotope distribution from 13C-or 14Clabeled glucose. J. Biol. Chem. 270: 13147–13159.

    PubMed  Google Scholar 

  • Dieuaide-Noubhani M, Canioni P & Raymond P (1997) Sugarstarvation-induced changes of carbon metabolism in excised maize root tips. Plant Physiol. 115: 1505–1513.

    PubMed  Google Scholar 

  • Edwards S, Nguyen B-T, Do B & Roberts JKM (1998) Contribution of malic enzyme, pyruvate kinase, phosphoenolpyruvate carboxylase and the Krebs cycle to respiration and biosynthesis and to intracellular pH regulation during hypoxia in maize root tips observed by nuclear magnetic resonance and gas chromatography-mass spectrometry. Plant Physiol. 116: 1073–1081.

    PubMed  Google Scholar 

  • Eichinger D, Bacher A, Zenk MH & Eisenreich W (1999) Quantitative assessment of metabolic flux by 13C NMR analysis. Biosynthesis of anthraquinones in Rubia tinctorum. J. Amer. Chem. Soc. 121: 7469–7475.

    Google Scholar 

  • Eicks M, Maurino V, Knappe S, Flügge UI & Fischer K (2002) The plastidic pentose phosphate translocator represents a link between the cytosolic and the plastidic pentose phosphate pathways in plants. Plant Physiol. 128: 512–522.

    PubMed  Google Scholar 

  • Eisenreich W, Rohdich F & Bacher A (2001) Deoxyxylulosephosphate pathway to terpenoids. Trends Plant Sci. 6: 78–84.

    PubMed  Google Scholar 

  • Fell D (1997) Understanding the Control of Metabolism. Portland Press, London.

    Google Scholar 

  • Fernie AR, Roscher A, Ratcliffe RG & Kruger NJ (2001) Fructose 2,6-bisphosphate activates pyrophosphate: fructose-6-phosphate 1-phosphotransferase and increases triose phosphate to hexose phosphate cycling in heterotrophic cells. Planta 212: 250–263.

    PubMed  Google Scholar 

  • Garlick AP, Moore C & Kruger NJ (2002) Monitoring flux through the oxidative pentose phosphate pathway using [1-14C]gluconate. Planta 216: 265–272.

    PubMed  Google Scholar 

  • Glawischnig E, Tomas A, Eisenreich W, Spiteller P, Bacher A & Gierl A (2000) Auxin biosynthesis in maize kernels. Plant Physiol. 123: 1109–1119.

    PubMed  Google Scholar 

  • Glawischnig E, Gierl A, Tomas A, Bacher A & Eisenreich W(2001) Retrobiosynthetic nuclear magnetic resonance analysis of amino acid biosynthesis and intermediary metabolism. Metabolic flux in developing maize kernels. Plant Physiol. 125: 1178–1186.

    PubMed  Google Scholar 

  • Glawischnig E, Gierl A, Tomas A, Bacher A & Eisenreich W(2002) Starch biosynthesis and intermediary metabolism in maize kernels. Quantitative analysis of metabolite flux by nuclear magnetic resonance. Plant Physiol. 130: 1717–1727.

    PubMed  Google Scholar 

  • Gombert AK, dos Santos MM, Christensen B & Nielsen J (2001) Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression. J. Bacteriol. 183: 1441–1451.

    PubMed  Google Scholar 

  • Keeling PL, Wood JR, Tyson RH & Bridges IG (1988) Starch biosynthesis in developing wheat grain. Evidence against the direct 29 involvement of triose phosphates in the metabolic pathway. Plant Physiol. 87: 311–319.

    Google Scholar 

  • Kosegarten H, Kalinowski H-O & Mengel K (1995) Long-term 13C labelling of starch and sucrose during the course of amyloplast development in intact suspension-cultured cells of potato (Solanum tuberosum). J. Plant Physiol. 146: 405–410.

    Google Scholar 

  • Krook J, Vreugdenhil D, Dijkema C & van der Plas LHW (1998) Sucrose and starch metabolism in carrot (Daucus carota L.) cell suspensions analysed by 13C-labelling: indications for a cytosol and a plastid-localised oxidative pentose phosphate pathway. J. Exp. Bot. 49: 1917–1924.

    Google Scholar 

  • Krook J, Vreugdenhil D, Dijkema C & van der Plas LHW (2000) Uptake of 13C-glucose by cell suspensions of carrot (Daucus carota) measured by in vivo NMR: cycling of triose-, pentoseand hexose phosphates. Physiol. Plant. 108: 125–133.

    Google Scholar 

  • Lawlor DW (2002) Carbon and nitrogen assimilation in relation to yield: Mechanisms are the key to understanding production systems. J. Exp. Bot. 53: 773–787.

    Google Scholar 

  • Lichtenthaler HK, Schwender J, Disch A & Rohmer M (1997) Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate independent pathway. FEBS Lett. 400: 271–274.

    PubMed  Google Scholar 

  • London RE (1988) 13C labelling in studies of metabolic regulation. Prog. Nucl. Magn. Reson. Spectrosc. 20: 337–383.

    Google Scholar 

  • Maaheimo H, Fiaux J, Petek Çakar Z, Bailey JE, Sauer U & Szyperski T (2001) Central carbon metabolism of Saccharomyces cerevisiae explored by biosynthetic fractional 13C labelling of common amino acids. Eur. J. Biochem. 268: 2464–2479.

    PubMed  Google Scholar 

  • Markai S, Marchand PA, Mabon F, Baguet E, Billault I & Robins RJ (2002) Natural deuterium distribution in branched-chain medium length fatty acids is nonstatistical: A site-specific study by quantitative H-2 NMR spectroscopy of the fatty acids of capsaicinoids. ChemBioChem 3: 212–218.

    PubMed  Google Scholar 

  • Martin GJ, Martin ML & Zhang B-L (1992) Site-specific natural isotope fractionation of hydrogen in plant natural products studied by nuclear magnetic resonance. Plant Cell Environ. 15: 1037–1050.

    Google Scholar 

  • Marx A, Eikmanns BJ, Sahm H, de Graaf AA & Eggeling L (1999) Response of the central metabolism in Corynebacterium glutamicum to the use of an NADH-dependent glutamate dehydrogenase. Metab. Eng. 1:35–48.

    PubMed  Google Scholar 

  • Marx A, de Graaf AA, Wiechert W, Eggeling L & Sahm H (1996) Determination of the fluxes in the central metabolism of Corynebacterium glutamicum by nuclear magnetic resonance spectroscopy combined with metabolite balancing. Biotechnol. Bioeng. 49: 111–129.

    Google Scholar 

  • Mesnard F, Roscher A, Garlick AP, Girard S, Baguet E, Arroo RRJ, Lebreton J, Robins RJ & Ratcliffe RG (2002) Evidence for the involvement of tetrahydrofolate in the demethylation of nicotine by Nicotiana plumbaginifolia cell suspension cultures. Planta 214: 911–919.

    PubMed  Google Scholar 

  • Møller K, Christensen B, Förster J, Piškur J, Nielsen J & Olsson L (2002) Aerobic glucose metabolism of Saccharomyces kluyveri: growth, metabolite production and quantification of metabolic fluxes. Biotechnol. Bioeng. 77: 186–193.

    PubMed  Google Scholar 

  • Mouillon J-M, Aubert S, Bourguignon J, Gout E, Douce R, Rébeillé F (1999) Glycine and serine catabolism in non-photosynthetic higher plant cells: Their role in C1 metabolism. Plant J. 20: 197–205.

    PubMed  Google Scholar 

  • Petersen S, de Graaf AA, Eggeling L, Möllney M, Wiechert W & Sahm H (2000) In vivo quantification of parallel and bidirectional fluxes in the anaplerosis of Corynebacterium glutamicum. J. Biol. Chem. 275: 35932–35941.

    PubMed  Google Scholar 

  • Petersen S, Mack C, de Graaf AA, Riedel C, Eikmanns BJ & Sahm H (2001) Metabolic consequences of altered phosphoenolpyruvate carboxykinase activity in Corynebacterium glutamicum reveal anaplerotic regulation mechanisms in vivo. Metab. Eng. 3: 344–361.

    PubMed  Google Scholar 

  • Portais JC & Delort AM (2002) Carbohydrate cycling in microorganisms: What can 13C-NMR tell us? FEMS Microbiol. Rev. 26: 375–402.

    PubMed  Google Scholar 

  • Ratcliffe RG, Roscher A & Shachar-Hill Y (2001) Plant NMR spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 39: 267–300.

    Google Scholar 

  • Ratcliffe RG & Shachar-Hill Y (2001) Probing plant metabolism with NMR. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 499–526.

    PubMed  Google Scholar 

  • Roberts JKM (2000) NMR adventures in the metabolic labyrinth within plants. Trends Plant Sci. 5: 30–34.

    PubMed  Google Scholar 

  • Rohmer M, Knani M, Simonin P, Sutter B & Sahm H (1993) Isoprenoid biosynthesis in bacteria: A novel pathway for early steps leading to isopentenyl diphosphate. Biochem. J. 295: 517–524.

    PubMed  Google Scholar 

  • Rohmer M, Seemann M, Horbach S, Bringer-Meyer S & Sahm H (1996) Glyceraldehyde 3-phosphate and pyruvate as precursors of isoprenic units in an alternative non-mevalonate pathway for terpenoid biosynthesis. J. Amer. Chem. Soc. 118: 2564–2566.

    Google Scholar 

  • Rontein D, Dieuaide-Noubhani M, Dufourc EJ, Raymond P & Rolin D (2002) The metabolic architecture of plant cells. Stability of central metabolism and flexibility of anabolic pathways during the growth cycle of tomato cells. J. Biol. Chem. 277: 43948–43960.

    PubMed  Google Scholar 

  • Roscher A, Kruger NJ & Ratcliffe RG (2000) Strategies for metabolic flux analysis in plants using isotope labelling. J. Biotechnol. 77: 81–102.

    PubMed  Google Scholar 

  • Sauer U, Lasko DR, Fiaux J, Hochuli M, Glaser R, Szyperski T, Wüthrich K & Bailey JE (1999) Metabolic flux ratio analysis of genetic and environmental modulations of Escherichia coli central metabolism. J. Bacteriol. 181: 6679–6688.

    PubMed  Google Scholar 

  • Schleucher J, Vanderveer P & Sharkey TD (1998) Export of carbon from chloroplasts at night. Plant Physiol. 118: 1439–1445.

    PubMed  Google Scholar 

  • Schwender J & Ohlrogge JB (2002) Probing in vivo metabolism by stable isotope labeling of storage lipids and proteins in developing Brassica napus embryos. Plant Physiol. 130: 347–361.

    PubMed  Google Scholar 

  • Schwender J, Seemann M, Lichtenthaler HK & Rohmer M (1996) Biosynthesis of isoprenoids (carotenoids, sterols, prenyl sidechains of chlorophyll and plastoquinone) via a novel pyruvate/ glyceraldehydes 3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus. Biochem. J. 316: 73–80.

    PubMed  Google Scholar 

  • Simpson TJ (1986) 13C NMR in metabolic studies. In: Linskens HF & Jackson JF (eds) Modern Methods of Plant Analysis. New Series, Vol 2 Nuclear Magnetic Resonance (pp. 1–42). Springer Verlag, Berlin.

    Google Scholar 

  • Smirnoff N, Conklin PL & Loewus FA (2001) Biosynthesis of ascorbic acid in plants: A renaissance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 437–467.

    PubMed  Google Scholar 

  • Szyperski T (1995) Biosynthetically directed fractional 13Clabeling of proteinogenic amino acids. An efficient analytical tool to investigate intermediary metabolism. Eur. J. Biochem. 232: 433–448.

    PubMed  Google Scholar 

  • Szyperski T (1998) 13C-NMR, MS and metabolic flux balancing in biotechnology research. Quart. Rev. Biophys. 31: 41–106.

    Google Scholar 

  • Tesch M, de Graaf AA & Sahm H (1999) In vivo fluxes in the ammonium assimilatory pathways in Corynebacterium glutamicum studied by 15N nuclear magnetic resonance. Appl. Environ. Microbiol. 65: 1099–1109.

    PubMed  Google Scholar 

  • Theodorou ME & Kruger NJ (2001) Physiological relevance of fructose 2,6-bisphosphate in the regulation of spinach leaf pyrophosphate: fructose 6-phosphate 1-phosphotransferase. Planta 213: 147–157.

    PubMed  Google Scholar 

  • van Winden, W, Verheijen, P & Heijnen S (2001) Possible pitfalls of flux calculations based on 13C-labeling. Metab. Eng. 3: 151–162.

    PubMed  Google Scholar 

  • Viola R, Davies HV & Chudeck AR (1991) Pathways of starch and sucrose biosynthesis in developing tubers of potato (Solanum tuberosum L.) and seeds of faba bean (Vicia faba L.). Elucidation by 13C nuclear magnetic resonance. Planta 183: 202–208.

    Article  Google Scholar 

  • Wiechert W (2001) 13C metabolic flux analysis. Metab. Eng. 3: 195–206.

    PubMed  Google Scholar 

  • Wiechert W (2002) Modeling and simulation: tools for metabolic engineering. J. Biotechnol. 94: 37–63.

    PubMed  Google Scholar 

  • Wiechert W & de Graaf AA (1996) In vivo stationary flux analysis by 13C labelling experiments. In: Tepfer T (ed) Adv. Biochem. Eng. Biotechnol., Vol. 54 (pp. 109–154). Springer Verlag, Berlin

    Google Scholar 

  • Wiechert W, Möllney M, Petersen S & de Graaf AA (2001) A universal framework for 13C metabolic flux analysis. Metab. Eng. 3: 265–283.

    PubMed  Google Scholar 

  • Zhang B-L, Quemerais B, Martin ML, Martin GJ & Williams JM (1994) Determination of the natural deuterium distribution in glucose from plants having different photosynthetic pathways. Phytochem. Anal. 5: 105–110.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N.J. Kruger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kruger, N., Ratcliffe, R. & Roscher, A. Quantitative approaches for analysing fluxes through plant metabolic networks using NMR and stable isotope labelling. Phytochemistry Reviews 2, 17–30 (2003). https://doi.org/10.1023/B:PHYT.0000004255.59062.88

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHYT.0000004255.59062.88

Navigation