Photosynthetica 2004, 42(1):117-122 | DOI: 10.1023/B:PHOT.0000040579.37842.ca

Dissipation of Excess Energy in Mehler-Peroxidase Reaction in Rumex Leaves During Salt Shock

H. X. Chen1, H. Y. Gao1, S. Z. An1, W. J. Li1
1 Department of Plant Sciences, Shandong Agricultural University, Taian, Shandong, P.R. China

By measurement of gas exchange and chlorophyll fluorescence, the effects of salt shock on photosynthesis and the mechanisms to protect photosynthetic machinery against photodamage during salt shock were investigated in leaves of Rumex seedlings. Salt shock induced significant decrease in photosynthesis both in 21 and 2 % O2. In 21 % O2, quantum yield of photosystem 2 (PS2) electron transport (ΦPS2) decreased slightly and qP remained constant, suggesting that the excitation pressure on PS2 did not increase during salt shock. In 2 % O2, however, both ΦPS2 and qP decreased significantly, suggesting that the excitation pressure on PS2 increased during salt shock. NPQ increased slightly in 21 % O2 whereas it increased significantly in 2 % O2. The data demonstrated that during salt shock a considerable electron flow was allocated to oxygen reduction in the Mehler-peroxidase reaction (MPR). Under high irradiance and in the presence of saturating CO2, the susceptibility of PS2 to photoinhibition in salt-shocked leaves was increased when the electron flow to oxygen in MPR was inhibited in 2 % O2. Hence, MPR is important in photoprotection of Rumex seedlings during salt shock.

Additional key words: chlorophyll fluorescence; NaCl; net photosynthetic rate; non-photochemical quenching; oxygen concentration; quantum yield of photosystem 2; stomatal conductance

Published: March 1, 2004  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Chen, H.X., Gao, H.Y., An, S.Z., & Li, W.J. (2004). Dissipation of Excess Energy in Mehler-Peroxidase Reaction in Rumex Leaves During Salt Shock. Photosynthetica42(1), 117-122. doi: 10.1023/B:PHOT.0000040579.37842.ca
Download citation

References

  1. Asada, K.: The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons.-Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 601-639, 1999. Go to original source...
  2. Asada, K., Takahashi, M.: Production and scavenging of active oxygen in photosynthesis.-In: Kyle, D.J., Osmond, C.B., Arntzen, C.J. (ed.): Photoinhibition. Pp. 227-287. Elsevier, Amsterdam-New York-Oxford 1987.
  3. Badger, M.R., Caemmerer, S. von, Ruuska, S., Nakano, H.: Electron flow to oxygen in higher plants and algae: rates and control of direct photoreduction (Mehler reaction) and rubisco oxygenase.-Phil. Trans. roy. Soc. London B 355: 1433-1446, 2000. Go to original source...
  4. Bethke, P.C., Drew, M.C.: Stomatal and nonstomatal compo-nents to inhibition of photosynthesis in leaves of Capsicum annuum during progressive exposure to NaCl salinity.-Plant Physiol. 99: 219-226, 1992. Go to original source...
  5. Brooks, A., Farquhar, G.D.: Effect of temperature on the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/ oxygenase and the rate of respiration in the light. Estimates from gas-exchange measurements on spinach.-Planta 165: 397-406, 1985. Go to original source...
  6. Brugnoli, E., Lauteri, M.: Effects of salinity on stomatal con-ductance, photosynthetic capacity, and carbon isotope dis-crimination of salt tolerant (Gossypium hirsutum L.) and salt sensitive (Phaseolus vulgaris L.) C3 non-halophytes.-Plant Physiol. 95: 628-635, 1991. Go to original source...
  7. Burritt, D.J., Mackenzie, S.: Antioxidant metabolism during acclimation of Begonia×erythrophylla to high light levels.-Ann. Bot. 91: 783-794, 2003. Go to original source...
  8. Caemmerer, S. von, Farquhar, G.D.: Some relationships between the biochemistry of photosynthesis and the gas ex-change of leaves.-Planta 153: 376-387, 1981. Go to original source...
  9. Clarke, J.E., Johnson, G.N.: In vivo temperature dependence of cyclic and pseudocyclic electron transport in barley.-Planta 212: 808-816, 2001. Go to original source...
  10. Demmig-Adams, B., Adams, W.W., III: Photoprotection and other response of plants to high light stress.-Annu. Rev. Plant Physiol. Plant mol. Biol. 43: 599-626, 1992. Go to original source...
  11. Flexas, J., Badger, M., Chow, W.S., Medrano, H., Osmond, C.B.: Analysis of the relative increase in photosynthetic O2 uptake when photosynthesis in grapevine leaves is inhibited following low night temperatures and/or water stress.-Plant Physiol. 121: 675-684, 1999. Go to original source...
  12. Genty, B., Briantais, J.-M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.-Biochim. biophys. Acta 990: 87-92, 1989. Go to original source...
  13. Harley, P.C., Loreto, F., di Marco, G., Sharkey, T.D.: Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photo-synthesis to CO2.-Plant Physiol. 98: 1429-1436, 1992. Go to original source...
  14. Haupt-Herting, S., Fock, H.P.: Oxygen exchange in relation to carbon assimilation in water-stressed leaves during photo-synthesis.-Ann. Bot. 89: 851-859, 2002. Go to original source...
  15. Krause, G.H., Vernotte, C., Briantais, J.-M.: Photoinduced quenching of chlorophyll fluorescence in intact chloroplast and algae. Resolution into two components.-Biochim. biophys. Acta 679: 119-124, 1982. Go to original source...
  16. Krause, G.H., Weis, E.: Chlorophyll fluorescence and photo-synthesis: the basics.-Annu. Rev. Plant Physiol. Plant mol. Biol. 42: 313-349, 1991. Go to original source...
  17. Li, X.G., Meng, Q.W., Jiang, G.Q., Zou, Q.: The susceptibility of cucumber and sweet pepper to chilling under low irradi-ance is related to energy dissipation and water-water cycle.-Photosynthetica 41: 259-265, 2003. Go to original source...
  18. Makino, A., Miyake, C., Yokota, A.: Physiological function of the water-water cycle (Mehler reaction) and the cyclic elec-tron flow around PSI in rice leaves.-Plant Cell Physiol. 43: 1017-1026, 2002. Go to original source...
  19. Miyake, C., Yokota, A.: Determination of the rate of photore-duction of O2 in the water-water cycle in watermelon leaves and enhancement of the rate by limitation of photosynthesis.-Plant Cell Physiol. 41: 335-342, 2000. Go to original source...
  20. Morales, F., Abadía, A., Gomez-Aparisi, J., Abadía, J.: Effects of combined NaCl and CaCl2 salinity on photosynthetic para-meters of barley grown in nutrient solution.-Physiol. Plant. 86: 419-426, 1992. Go to original source...
  21. Müller, M., Li, X.P., Niyogi, K.K.: Non-photochemical quen-ching. A response to excess light energy.-Plant Physiol. 125: 1558-1566, 2001. Go to original source...
  22. Neubauer, C., Yamamoto, H.Y.: Mehler-peroxidase reaction mediates zeaxanthin formation and zeaxanthin-related fluores-cence quenching in intact chloroplasts.-Plant Physiol. 99: 1354-1361, 1992. Go to original source...
  23. Noctor, G., Foyer, C.H.: Ascorbate and glutathione: Keeping active oxygen under control.-Annu. Rev. Plant Physiol. Plant mol. Biol. 49: 249-279, 1998. Go to original source...
  24. Osmond, C.B., Grace, S.C.: Perspective on photoinhibition and photorespiration in the field: quintessential inefficiencies of the light and dark reactions of photosynthesis.-J. exp. Bot. 46: 1351-1362, 1995. Go to original source...
  25. Ruuska, S.A., Bagder, M.R., Andrews, T.J., Caemmerer, S. von: Photosynthetic electron sinks in transgenic tobacco with reduced amounts of Rubisco: Evidence for significant Mehler reaction.-J. exp. Bot. 51: 357-368, 2000. Go to original source...
  26. Schreiber, U., Neubauer, C.: O2-dependent electron flow, mem-brane energization and the mechanism of non-photochemical quenching of chlorophyll fluorescence.-Photosynth. Res. 25: 279-293, 1990. Go to original source...
  27. Sharma, P.K., Hall, D.O.: Changes in carotenoid composition and photosynthesis in sorghum under high light and salt stress.-J. Plant Physiol. 140: 661-666, 1992. Go to original source...