Skip to main content
Log in

Molecular and cellular basis of the aetiology and management of diabetic cardiomyopathy: A short review

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Diabetes mellitus is one of the most common chronic diseases affecting millions of people worldwide. Cardiovascular complication including myocardial infarction is one of the major causes of death in diabetic patients. Diabetes mellitus induces abnormal pathological findings including cell hypertrophy, neuropathy, interstitial fibrosis, myocytolysis and apoptosis and lipid deposits in the heart. In addition, the cytoplasmic organelles of cardiomyocytes including the plasma membrane, mitochondrion and sarcoplasmic reticulum are also impaired in both type I and type II diabetes. Hyperglycaemia is a major aetiological factor in the development of diabetic cardiomyopathy in patients suffering from diabetes. Hyperglycaemia promotes the production of reactive oxygen (ROS) and nitrogen species (RNS). The release of ROS and RNS induces oxidative stress leading to abnormal gene expression, faulty signal transduction and apoptosis of cardiomyocytes. Hyperglycaemia also induces apoptosis by p53 and the activation of the cytochrome c-activated caspase-3 pathway. Stimulation of connective tissue growth factor and the formation of advanced glycation end products in extracellular matrix proteins induces collagen cross-linking and contribute to the fibrosis observed in the interstitium of the heart of diabetic subjects. In terms of signal transduction, defects in intracellular Ca2+ signalling due to alteration of expression and function of proteins that regulate intracellular Ca2+ also occur in diabetes. All of these abnormalities result in gross dysfunction of the heart. Beta-adrenoreceptor antagonists, ACE inhibitors, endothelin-receptor antagonist (Bonestan®), adrenomedullin, hormones (insulin, IGF-1) and antioxidants (magniferin, metallothionein, vitamins C and E) reduce interstitial fibrosis and improve cardiac function in diabetic cardiomyopathy. (Mol Cell Biochem 261: 187–191, 2004)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yuan S, Liu Y, Zhu L: Vascular complications of diabetes mellitus. Clin Exp Pharmacol Physiol 26: 977–978, 1999

    Article  CAS  PubMed  Google Scholar 

  2. Kawaguchi M, Asakura T, Saito F, Nemoto O, Maehara K, Miyake K, Sugai N, Maruyama Y: Changes in diameter size and F-actin expression in the myocytes of patients with diabetes and streptozotocin-induced diabetes model rats. J Cardiol 34: 333–339, 1999

    CAS  PubMed  Google Scholar 

  3. Schramm E, Wagner M, Nellessen U, Inselmann G: Ultrastructural changes of human cardiac atrial nerve endings in diabetes mellitus. Eur J Clin Invest 30: 311–316, 2000

    Article  CAS  PubMed  Google Scholar 

  4. Anguera I, Magrina J, Setoain FJ, Esmatges E, Pare C, Vidal J, Azqueta M, Garcia A, Grau JM, Vidal Sicart, Betriu A: Anatomopathological basis of latent ventricular dysfunction in insulin dependent diabetics. Rev Esp Cardiol 51: 43–50, 1998

    CAS  PubMed  Google Scholar 

  5. Saito F, Kawaguchi M, Izumida J, Asakura T, Maehara K, Maruyama Y: Alteration in haemodynamics and pathological changes in the cardiovascular system during the development of Type 2 diabetes mellitus in OLETF rats. Diabetologia 46: 1161–1169, 2003

    Article  CAS  PubMed  Google Scholar 

  6. Chen S, Evans T, Mukherjee K, Karmarzyn M, Chakrabati S: Diabetes-induced myocardial structural changes: Role of endothelin-1 and its receptors. J Mol Cell Cardiol 32: 1621–1629, 2000

    CAS  PubMed  Google Scholar 

  7. Nitta A, Murai R, Suzuki N, Ito H, Nomoto H, Katoh G, Furukawa Y, Furukawa S: Diabetic neuropathies in brain are induced by deficiency of BDNF. Neurotoxicol Teratol 24: 695–701, 2002

    Article  CAS  PubMed  Google Scholar 

  8. Eaton SE, Harris ND, Ibrahim S, Patel KA, Selmi F, Radatz M, Ward JD, Tesfaye S: Increased sural nerve epineural blood flow in human subjects with painful diabetic neuropathy. Diabetologia 46: 934–939, 2003

    CAS  PubMed  Google Scholar 

  9. Watkins PJ, Thomas PK: Diabetes mellitus and the nervous system. J Neurol Neurosurg Psychiatr 65: 620–632, 1998

    CAS  PubMed  Google Scholar 

  10. Hosking DJ, Bennett T, Hampton JR: Diabetic autonomic neuropathy. Diabetes 27: 1043–1055, 1978

    CAS  PubMed  Google Scholar 

  11. Grossman E, Messerli FH: Diabetic and hypertensive heart disease. Ann Intern Med 125: 304–310, 1996

    CAS  PubMed  Google Scholar 

  12. Addicks K, Boy C, Rösen P: Sympathetic autonomic neuropathy in the heart of the spontaneous diabetic BB rat. Ann Anat 175: 253–257, 1993

    CAS  PubMed  Google Scholar 

  13. Kamal AAJ, Tay SSW, Wong WC: The cardiac ganglia in streptozotocin-induced diabetic rats. 54: 41–49, 1991

    CAS  Google Scholar 

  14. Lund DD, Subiera AR, Pardinin BJ, Chang KSK: Alterations in cardiac parasympathetic indices is STZ-induced diabetic rats. Diabetes 41: 160–166, 1992

    CAS  PubMed  Google Scholar 

  15. Gillon KR, King RH, Thomas PK: The pathology of diabetic neuropathy and effect of aldose reductase inhibitors. Clin Endocrinol Metab 15: 837–853, 1986

    CAS  PubMed  Google Scholar 

  16. Sima AA: Pathological definition and evaluation of neuropathy and clinical correlations. Can J Neurol Sci 21: 13–17, 1994

    Google Scholar 

  17. Duchen LW, Anjorin P, Wakin PJ, Mackay JD: Pathology of autonomic neuropathy in diabetes mellitus. Ann Intern Med 93: 301–303, 1980

    Google Scholar 

  18. Muhr-Becker D, Ziegler AG, Druschky A, Wolfram G, Haslbeck M, Neundorfer B, Standl E, Schnell O: Evidence for specific autoimmunity against sympathetic and parasympathetic nervous tissues in type I diabetes mellitus and the relation to cardiac autonomic dysfunction. Diabet Med 15: 467–472, 1998

    Article  CAS  PubMed  Google Scholar 

  19. Cai L, Kang YJ: Oxidative stress and cardiomyopathy: A brief review. Cardiovasc Toxicol 1: 181–193, 2001

    CAS  PubMed  Google Scholar 

  20. Fiordaliso F, Leri A, Cesselli D, Limana F, Safai B, Nadal-Ginard B, Anversa P, Kajstura J: Hyperglycaemia activates p53 and p53-regulated genes leading to myocyte cell death. Diabetes 50: 2363–2357, 2001

    CAS  PubMed  Google Scholar 

  21. Cai L, Li W, Wang G, Guo L, Jiang Y, Kang YJ: Hyperglycemia-induced apoptosis in mouse myocardium: Mitochondrial cytochrome C-mediated caspase-3 activation pathway. Diabetes 51: 1938–1948, 2002

    CAS  PubMed  Google Scholar 

  22. Candido R, Forbes JM, Thomas MC, Thallas V, Dean RG, Burns WC, Tikellis C, Ritchie RH, Twigg SM, Cooper ME, Burrell LM: Abreaker of advanced glycation end products attenuates diabetes-induced myocardial structural changes. Circ Res 92: 785–792, 2003

    Article  CAS  PubMed  Google Scholar 

  23. Choi KM, Zhong Y, Hoit BD, Grupp IL, Hahn H, Dilly KW, Guatimosim S, Lederer WJ, Matlib MA: Defective intracellular Ca2+ signalling contributes to cardiomyopathy in Type 1 diabetic rats. Am J Physiol Heart Circ Physiol 283: H1398–H1408, 2002

    CAS  PubMed  Google Scholar 

  24. Kim HW, Ch YS, Lee HR, Park SY, Kim YH: Diabetic alterations in cardiac sarcoplasmic reticulum Ca2+-ATPase and phospholamban protein expression. Life Sci 70: 367–379, 2001

    Article  CAS  PubMed  Google Scholar 

  25. Way KJ, Isshiki K, Suzuma K, Yokota T, Zvagelsky D, Schoen FJ, Sandusky GE, Pechous PA, Vlahos CJ, Wakasaki H, King GL: Expression of connective tissue growth factor is increased in injured myocardium associated with protein kinase C beta2 activation and diabetes. Diabetes 51: 2709–2718, 2002

    CAS  PubMed  Google Scholar 

  26. Grimm D, Jabusch HC, Kossmehl P, Huber M, Fredersdorf S, Griese DP, Krämer BK, Kromer EP: Experimental diabetes and left ventricular hypertrophy: Effect of beta receptor blockade. Cardiovasc Pathol 11: 229–237, 2002

    Article  CAS  PubMed  Google Scholar 

  27. Ruffolo RR, Bril A, Feuerstein GZ: Cardioprotective effect of carvedilol. Cardiology 82: 24–28, 1993

    CAS  PubMed  Google Scholar 

  28. Al-Shafei AI, Wise RG, Gresham GA, Bronns G, Carpenter TA, Hall LD, Huang CL: Non-invasive magnetic resonance imaging assessment of myocardial changes and the effects of angiotensin-converting enzyme inhibition in diabetic rats. J Physiol 538: 541–553, 2002

    CAS  PubMed  Google Scholar 

  29. Sugawara T, Fujii S, Akm Zaman, Goto D, Kaneko T, Furumoto T, Togashi H, Yoshioka M, Koyama T, Kitabatake A: Coronary capillary remodeling in non-insulin dependent diabetic rats: Amelioration by inhibition of angiotensin converting enzyme and its potential clinical implications. Hypertens Res 24: 75–81, 2001

    CAS  PubMed  Google Scholar 

  30. Miric G, Dallemagne C, Endre Z, Margolin S, Taylor SM, Brown L: Reversal of cardiac and renal fibrosis by pirfenidone and spironolactone in streptozotocin-diabetic rats. Br J Pharmacol 133: 687–694, 2001

    Article  CAS  PubMed  Google Scholar 

  31. Chen S, Khan ZA, Cukiernik M, Chakrabarti S: Differential activation of NF-kappa B and AP-1 in increased fibronectin synthesis in target organs of diabetic complications. Am J Physiol Endocrinol Metab 284: E1089–E1097, 2003

    CAS  PubMed  Google Scholar 

  32. Dobrzynski E, Montanari D, Agata J, Zhu J, Chao J, Chao L: Adrenomedullin improves cardiac function and prevents renal damage in streptozotocin-induced diabetic rats. AmJ Physiol Endocrinol Metab 283: E1291–E1298, 2002

    CAS  Google Scholar 

  33. Norby FL, Wold LE, Duan J, Hintz KK, Ren J: IGF-1 attenuates diabetes-induced cardiac contractile dysfunction in ventricular myocytes. Am J Physiol Endocrinol Metabol 283: E658–E666, 2002

    CAS  Google Scholar 

  34. Ren J, Samson WK, Sowers JR: Insulin-like growth factor I as a cardiac hormone: Physiological and pathophysiological implications in heart disease. J Mol Cell Cardiol 31: 2041–2061, 1999

    Article  Google Scholar 

  35. Muruganandan S, Gupta S, Kataria M, Lal J, Gupta PK: Mangiferin protects the streptozotocin-induced oxidative damage to cardiac and renal tissues in rats. Toxicology 176: 165–173, 2002

    Article  CAS  PubMed  Google Scholar 

  36. Vallee BL: The function of metallothionein. Neurochem Int 27: 23–33, 1995

    Article  CAS  PubMed  Google Scholar 

  37. Moffatt P, Denizeau F: Metallothionein in physiological and physiopathological processes. Drug Metab Rev 29: 261–307, 1997

    CAS  PubMed  Google Scholar 

  38. McKenna IM, Gordon T, Chen LC, Anver MR, Waalkes MP: Expression of metallothionein protein in the lung of Wistar rats and C57 and DBA mice exposed to cadmium oxide fumes. Toxicol Appl Pharmacol 153: 169–178, 1998

    Article  CAS  PubMed  Google Scholar 

  39. Kimura T, Fujita I, Itoh N, Muto N, Nakanishi T, Takahashi K, Azuma J, Tanaka K: Metallothionein acts as a cytoprotectant against doxorubicin toxicity. J Pharmacol Exp Ther 292: 299–302, 2000

    CAS  PubMed  Google Scholar 

  40. Ali MM, Frei E, Straub J, Breuer A, Wiessler M: Induction of metallothionein by zinc protects from daunorubicin toxicity in rats. Toxicology 179: 85–93, 2002

    Article  CAS  PubMed  Google Scholar 

  41. Liang Q, Carlson EC, Donthi RV, Kralik PM, Shen X, Epstein PN: Overexpression of metallothionein reduces diabetic cardiomyopathy. Diabetes 51: 174–181, 2002

    CAS  PubMed  Google Scholar 

  42. Sharma AK, Ponery AS, Lawrence PA, Ahmed I, Bastaki SM, Dhanasekaran S, Sheen RS, Adeghate E: Effect of alpha-tocopherol supplementation on the ultrastructural abnormalities of peripheral nerves in experimental diabetes. J Peripher Nerv Syst 6: 33–39, 2001

    Article  CAS  PubMed  Google Scholar 

  43. Clarke J, Snelling J, Ioannides C, Flatt PR, Barnett CR: Effect of vitamin C supplementation on hepatic cytochrome P450 mixed-function oxidase activity in streptozotocin-diabetic rats. Toxicol Lett 89: 249–256, 1996

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adeghate, E. Molecular and cellular basis of the aetiology and management of diabetic cardiomyopathy: A short review. Mol Cell Biochem 261, 187–191 (2004). https://doi.org/10.1023/B:MCBI.0000028755.86521.11

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MCBI.0000028755.86521.11

Navigation