Skip to main content
Log in

Acridones and Quinacridones: Novel Fluorophores for Fluorescence Lifetime Studies

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Two new families of fluorescent probe, acridones and quinacridones, whose fluorescence lifetime can be altered to produce a range of lifetimes from 3 ns to 25 ns are described. Both families of fluorophore have fluorescence lifetimes which are unaffected by pH in the range of 5 to 9 and show a marked resistance to photobleaching. The probes have been modified to allow them to be attached to biomolecules and the labelling of a neuropeptide (substance P) is described. The labelled peptides have the same fluorescence lifetime as the free fluorophore. Quinacridone, with an emission around 550 nm offers a long fluorescence lifetime, photostable alternative to fluorescein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Valeur (2001). New Trends in Fluorescence Spectroscopy: Applications to Chemical and Life Science, Springer-Verlag, Berlin.

    Google Scholar 

  2. K. A. Guiliano and D. L. Taylor (1998). Fluorescent–protein biosensors: New tools for drug discovery. Trends Biotechnol. 16, 135-140.

    Google Scholar 

  3. B. K. Nunnally, H. He, L.-C. Li, S. A. Tucker, and L. B. McGown (1997). Characterization of visible dyes for four-decay fluorescence detection in DNA sequencing. Anal. Chem. 69, 2392-2397.

    Google Scholar 

  4. J. H. Flanagan, C. V. Owens, S. E. Romero, E. Waddell, S.H. Kahn, R. P. Hammer, and S. A. Soper (1998). Near-infrared heavy-atom-modified fluorescent dyes for cell-calling in DNA-sequencing applications using temporal discrimination. Anal. Chem. 70, 2676-2684.

    Google Scholar 

  5. M. Sauer, K.-T. Han, R. Muller, A. Schultz, R. Tadday, S. Seeger, J. Wolfrum, J. Arden-Jacob, G. Deltau, N. J. Marx, and K. H. Drexhage (1993). New fluorescent labels for time-resolved detection of biomolecules. J. Fluoresc. 3(3), 131-139.

    Google Scholar 

  6. R. Muller, D. P. Herten, U. Lieberwirth, M. Neumann, M. Sauer, A. Schultz, S. Siebert, K. H. Drexhage, and J. Wolfrum (1977). Efficient DNA sequencing with a pulsed semiconductor laser and a new fluorescent dye set. Chem. Phys. Lett. 279, 282-287.

    Google Scholar 

  7. G. Cosa, K.-S. Focsaneanu, J. R. N. McClean, and J. C. Scaiano (2000). Direct determination of single-to-double stranded DNA ratio in solution applying time-resolved fluorescence measurements of dye-DNA complexes. Chem. Commun. 8, 689-690.

    Google Scholar 

  8. P. Tinnerfeld, V. Buschmann, D.-P. Herten, K-T. Han, and M. Sauer (2000). Confocal fluorescence lifetime imaging microscopy (FLIM) at the single molecule level. Single Mol. 3, 215-223.

    Google Scholar 

  9. P. Pal, H. Zeng, G. Durocher, D. Girard, R. Giasson, L. Blanchard, L. Gaboury, and L. Villeneuve (1996). Spectroscopic and photophysical properties of some new rhodamine derivatives in cationic, anionic and neutral miscelles. J. Photoch. Photobio. A 98, 65-72.

    Google Scholar 

  10. J. H. Richardson, L. L. Steinmetz, S. B. Deutscher, W. A. Bookless, and W. L. Schmelzinger (1978). Measurement of fluorescence lifetimes of coumarin laser dyes with a mode-locked krypton ion laser. Z. Naturforsch. A 33a, 1592-1593.

    Google Scholar 

  11. K. Berndt, H. Durr, and K.-H. Feller (1987). Time resolved fluorescence spectroscopy of cyanine dyes III. Structure dependence of fluorescence lifetimes. Z. Phys. Chem.-Leipzig. 268, 250-256.

    Google Scholar 

  12. A. Burghart, H. Kim, M. B. Welch, L. H. Thorsen, J. Reibenspies, and K. Burgess (1999). 3,5-Diaryl-4,4-bora-3a,4a-diaza-s-indacene (BODIPY) dyes: Synthesis, spectroscopic, electrochemical, and structural properties. J. Org. Chem. 64, 7813-7819.

    Google Scholar 

  13. W. M. Nau, G. Greiner, H. Rau, J. Wall, M. Olivucci, and J. C. Scaiano (1999). Fluorescence of 2,3-diazabicyclo[2.2.2]oct-2-ene revisited: Solvent-induced quenching of the n,π*-excited state by an aborted hydrogen atom transfer. J. Phys. Chem. A 103, 1579-1584.

    Google Scholar 

  14. B. P. Maliwal, Z. Gryczynski, and J. R. Lakowicz (2001). Long-wavelength long-lifetime lumiphores. Anal. Chem. 73, 4277-4285.

    Google Scholar 

  15. J. Chen and P. R. Selvin (2000). Lifetime-and color-tailored fluorophores in the micro-to millisecond time regime. J. Am. Chem. Soc. 122, 657-660.

    Google Scholar 

  16. R. B. Thompson and E. Gratton (1988). Phase Fluorometric method for determination of standard lifetimes. Anal. Chem. 60, 670-674.

    Google Scholar 

  17. Z. Razavi and F. McCapra (2000). Stable and versatile active acridinium esters I. Luminescence 15, 239-249.

    Google Scholar 

  18. G. Zomer and J. F. C. Stavenuiter. Acridinium compounds as chemiluminogenic labels. U.S.Pat. US6018047.

  19. M. Adamczyk, Y.-Y. Chen, P. G. Fishpaugh, P. G. Mattingly, Y. Pan, K. Shreder, and Z. Yu (2000). Linker-meditated modulation of the chemiluminescent signal from N10-(3-Sulfopropyl)-N-sulfonylacridinium-9-carboxamide tracers. Bioconjug. Chem. 11, 714-724.

    Google Scholar 

  20. K. Smith, Z. Li, J.-J. Yang, I. Weeks, and J. S. Woodhead (2000). Synthesis and properties of novel chemiluminescent biological probes: Substituted 4-(2-succimidyloxycarbonylethyl)phenyl10-methylacridinium-9-carboxylate trifluoromethylsulphonates. J. Photoch. Photobio. A 132, 181-191.

    Google Scholar 

  21. R. M. Acheson (1973). Acridines, 2nd edn., Wiley, New York.

    Google Scholar 

  22. J. G. Robertson, B. D. Palmer, M. Officer, D. J. Siegers, J. W. Paxton, and G. J. Shaw (1991). Cytosol mediated metabolism of the experimental antitumor agent acridine carboxamide to the 9-acridone derivative. Biochem. Pharmacol. 42, 1879-1884.

    Google Scholar 

  23. L. K. Basco, S. Mitaku, A. L. Skaltsounis, N. Ravelomanantsoa, F. Tillequin, M. Koch, and J. Bas (1994). In vitro activities of furoquinoline and acridone alkaloids against Plasmodium falciparum. Antimicrob. Agents Ch. 38, 1169-1171.

    Google Scholar 

  24. H. Kitagawa, A. Kinoshita, and K. Sugahara (1995). Microanalysis of glycosaminoglycan-derived disaccharides labelled with the fluorophore 2-aminoacridone by capillary electrophoresis and high-performance liquid chromatography. Anal. Biochem. 232, 114-121.

    Google Scholar 

  25. P. Jackson. Analysis of carbohydrates using 2-aminoacridone. U.S.Pat. US5472582.

  26. T. Faller, K. Hutton, G. Okafo, A. Gribble, P. Camilleri, and D. E. Games (1997). A novel acridone derivative for the fluorescence tagging and mass spectroscopic sequencing of peptides. J. Chem. Soc., Chem. Commun. 1529-1530.

  27. J.-L. Reymond, T. Koch, J. Schröer, and E. A. Tierney (1996). A general assay for antibody catalysis using acridone as a fluorescent tag. Proc. Natl. Acad. Sci. U.S.A. 93, 4251-4256.

    Google Scholar 

  28. S. Fukuzumi, and K. Ohkubo (2002). Fluorescence maxima of 10-methylacridone-metal ion salt complexes: A convenient and quantitative measure of Lewis acidity of metal ion salts. J. Am. Chem. Soc. 124, 10270-10271.

    Google Scholar 

  29. E. K.Hill, A. J. deMello, H. Birrell, J. Charlwood, and P. Camilleri (1998). Steady state and time-resolved fluorescence of 2-aminoacridone sugar derivatives. J. Chem. Soc. Perkin Trans 2 2337-2341.

  30. S. N. Shcherbo, G. A. Val'kova, D. N. Shigorin, R. S. Sorokina, and L. F. Rybakova (1997). Systematic classification of molecules in terms of their luminescence spectroscopic properties IV. Acridone and its derivatives. Zh. Fiz. Khim. 53, 562-565. Russ. J. Phys. Chem. 53, 318-320. (English translation)

    Google Scholar 

  31. G. A. Val'kova, N. A. Rudenko, R. S. Sorokina, L. F. Rybakova, and A. N. Poplavskii (1988). Orbital nature, spectral luminescence, and photochemical properties of molecules. VI. Photodissociation of substituted heteroaromatic compounds in radiative states. Zh. Fiz. Khim. 62, 1032-1036. Russ. J. Phys. Chem. 62, 648-651. (English translation)

    Google Scholar 

  32. G. A. Val'kova, N. V. Korol'kova, M. B. Ryzhikov, A. N. Rodionov, A. I. Raznoshinskii, V. I. Yuzhakov, S. N. Shcherbo, and D. N. Shigorin (1991). Orbital nature of the electronically excited states and deactivation processes in a group of acridone and phenanthridone derivatives. Zh. Fiz. Khim. 65, 1227-1233. Russ. J. Phys. Chem. 65, 516-519. (English translation)

    Google Scholar 

  33. G. A. Val'kova, S. N. Shcherbo, and D. N. Shigorin (1978). On the classification of molecules in terms of their luminescence spectra II. Dokl. Akad. Nauk. SSSR. 240, 884-887.Russ. J. Phys. Chem. 65, 648-651. (English translation

    Google Scholar 

  34. S. N. Shcherbo, G. A. Val'kova, D. N. Shigorin, Z. Z. Moiseeva, and E. Sh. Bir (1978). Systematic classification of molecules in terms of luminescence spectroscopic properties. V. Linear quinacridone and its derivatives. Zh. Fiz. Khim. 53, 566-569. Russ. J. Phys. Chem. 53, 320-322. (English translation)

    Google Scholar 

  35. P-H. Liu, H. Tian, C-P. Chang (2000). Luminescence properties of novel soluble quinacridones. Photochem. Photobio. A 137, 99-104.

    Google Scholar 

  36. G. D. Potts, W. Jones, J. F. Bullock, S.J. Andrews, and S. J. Maginn (1994). The crystal structure of quinacridone: An archetypal pigment. J. Chem. Soc., Chem. Comm. 22, 2565-2566.

    Google Scholar 

  37. Z. Hao, J. S. Zambounis, and A. Iqbal. Fluorescent quinacridone pigments. U.S.Pat. US5561232.

  38. J. H. Rothman and W. C Still (1999). A new generation of fluorescent chemosensors demonstrate improved analyte detection sensitivity and photobleaching resistance. Bioorg. Med. Chem. Lett. 9, 509-512.

    Google Scholar 

  39. G. Klein, D. Kaufmann, S. Schürch, and J.-L. Reymond (2001). A fluorescent metal sensor based on macrocyclic chelation. Chem. Commun. 6, 561-562.

    Google Scholar 

  40. Z. Vejdelek, M. Rajsner, A. Dlabac, M. Ryska, and J. Holubek (1980). Collect: Psychotropic derivatives of 5-phenyl-7-chloro-1,4-benzodiazepin-2-one and contribution to the synthesis of its 5-(2-chlorophenyl) analogue. Czech. Chem. Commun. 45(12), 3593-3615.

    Google Scholar 

  41. L. L. Pushkina, O. P. Shelyapin, and S. M. Shein (1985). Synthesis of N,N′-dialkylquinacridones under the conditions of heterogeneous catalysis. Khim. Geterotsikl. 7, 952-955. Chem. Heterocycl. Comp. 21(7), 792-795. (English translation)

    Google Scholar 

  42. E. E. Jaffe and W. J. Marshall. Quinacridone pigments. U.S.Pat. US3386843.

  43. F. Ullman (1903). Ueber eine neue Bildungsweise von Diphenylaminderivaten. Chem. Ber. 36, 2382.

    Google Scholar 

  44. A. Albert and B. Ritchie (1942). 9-Aminoacridone. Org. Synth. 3, 53-56.

    Google Scholar 

  45. W. D. Smart. Process for N-methylacridone. U.S.Pat. US3021334.

  46. R. M. Acheson and M. J. T. Robinson (1953). The bromination of acridone. J. Chem. Soc. 232-238.

  47. I. D. Postescu and D. A. Suciu (1976). Method for N-alkylation of acridones. J. Prak. Chem. 318, 515-518.

    Google Scholar 

  48. M. Vlassa, I. A. Silberg, R. Custelceanu, and M. Culea (1995). Reaction of π-deficient aromatic heterocycles with ammonium polyhalides I. Halogenation of acridone and acridine derivatives using benzyltriethylammonium (BTEA) polyhalides. Synthetic. Commun. 25, 3493-3501.

    Google Scholar 

  49. A. Le Pape and E. Marechal (1977). Chimie Macromoléculaire. C. R. Acad. Sc. Paris Ser. C. 284, 619-622.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Anthony Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, J.A., West, R.M. & Allen, M. Acridones and Quinacridones: Novel Fluorophores for Fluorescence Lifetime Studies. Journal of Fluorescence 14, 151–171 (2004). https://doi.org/10.1023/B:JOFL.0000016287.56322.eb

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOFL.0000016287.56322.eb

Navigation