Skip to main content
Log in

Development of a green fluorescent protein metastatic-cancer chick-embryo drug-screen model

  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

The chick-embryo model has been an important tool to study tumor growth, metastasis, and angiogenesis. However, an imageable model with a genetic fluorescent tag in the growing and spreading cancer cells that is stable over time has not been developed. We report here the development of such an imageable fluorescent chick-embryo metastatic cancer model with the use of green fluorescent protein (GFP). Lewis lung carcinoma cells, stably expressing GFP, were injected on the 12th day of incubation in the chick embryo. GFP-Lewis lung carcinoma metastases were visualized by fluorescence, after seven days additional incubation, in the brain, heart, and sternum of the developing chick embryo, with the most frequent site being the brain. The combination of streptokinase and gemcitabine was evaluated in this GFP metastatic model. Twelve-day-old chick embryos were injected intravenously with GFP-Lewis lung cancer cells, along with these two agents either alone or in combination. The streptokinase-gemcitabine combination inhibited metastases at all sites. The effective dose of gemcitabine was found to be 10 mg/kg and streptokinase 2000 IU per embryo. The data in this report suggest that this new stably fluorescent imageable metastatic-cancer chick-embryo model will enable rapid screening of new antimetastatic agents.

Abbreviation: GFP — green fluorescent protein

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cuadra M. Chorio-allantoic membrane touch preparations. Anat Record 1964; 149: 425–41.

    Article  CAS  Google Scholar 

  2. Murphy JB. Transplantability of malignant tumors to embryos of a foreign species. J Am Med Assoc 1912; 59: 874.

    Google Scholar 

  3. Leighton, Joseph. The Spread of Cancer. Pathogenesis, Experimental Methods, Interpretations. Chapter VII: The Spread of Cancer Explored in the Embryonated Egg. New York: Academic Press 1967; 115–92.

    Google Scholar 

  4. Alfthan OS. A comparative study of the growth of skin and human skin tumors on the chorioallantoic membrane of the embryonated chicken eggs. Ann Med Exp Biol Fenniae (Helsinki) 1956; 34 (Suppl 9): 1–97.

    CAS  Google Scholar 

  5. Dagg CP, Karnofsky DA, Toolan HW, Roddy J. Serial passage of human tumors in chick embryo: Growth inhibition by nitrogen mustard. Proc Soc Exp Biol Med 1954; 87: 223–7.

    PubMed  CAS  Google Scholar 

  6. Levi-Montalcini R. Growth control of nerve cells by a protein factor and its antiserum. Science 1964; 143: 105–10.

    PubMed  CAS  Google Scholar 

  7. Bender DH, Friedgood CE, Lee HF. Transplantation of heterologous tumors by the intravenous inoculation of the chick embryo. Cancer Res 1949; 9: 61–4.

    PubMed  CAS  Google Scholar 

  8. Karnofsky DA, Dagg CP, Ortega LG et al. Metastases from mouse tumors growing on the chorioallantoic membrane of the chick embryo. Proc Am Assoc Cancer Res 1957; 2: 220–1.

    Google Scholar 

  9. Chambers AF, Schmidt EE, MacDonald IC et al. Early steps in hematogenous metastasis of B16F1 melanoma cells in chick embryos studied by high-resolution intravital videomicroscopy. J Natl Cancer Inst 1992; 84: 797–803.

    PubMed  CAS  Google Scholar 

  10. Morris VL, Koop S, MacDonald IC et al. Mammary carcinoma cell lines of high and low metastatic potential differ not in extravasation but in subsequent migration and growth. Clin Exp Metast 1994; 12: 357–67.

    Article  CAS  Google Scholar 

  11. Hoffman RM. Green fluorescent protein imaging of tumour growth, metastasis, and angiogenesis in mouse models. Lancet Oncol 2002; 3: 546–56.

    Article  PubMed  CAS  Google Scholar 

  12. Rashidi B, Yang M, Jiang P et al. A highly metastatic Lewis lung carcinoma orthotopic green fluorescent protein model. Clin Exp Metast 2000; 18: 57–60.

    Article  CAS  Google Scholar 

  13. Vainio O. Experimental immunology in chicken. In Lefkovits I (ed): Immunology Methods Manual.2185-97. San Diego: Academic Press 1997; 2185–97.

    Google Scholar 

  14. van Moorsel CJA, Pinedo HM, Veerman G, Vermorken JB, Postmus PE, Peters GJ. Scheduling of gemcitabine and cisplatin in Lewis lung tumor bearing mice. Eur J Cancer 1999; 35: 808–14.

    Article  PubMed  CAS  Google Scholar 

  15. Malke H, Roe B, Ferretti JJ. Nucleotide sequence of the streptokinase gene from Streptococcus equisimilis H46A. Gene 1985; 34: 357–62.

    Article  PubMed  CAS  Google Scholar 

  16. Christensen LR. Streptococcal fibrinolysis: A proteolytic reaction due to a serum enzyme activated by streptococcal fibrinolysin. J Gen Physiol 1945; 28: 363–83.

    Article  CAS  Google Scholar 

  17. Palumbo JS, Kombrinck KW, Drew AF et al. Fibrinogen is an important determinant of the metastatic potential of circulating tumor cells. Blood 2000; 96: 3302–9.

    PubMed  CAS  Google Scholar 

  18. Arkel YS. Thrombosis and cancer. Semin Oncol 2000; 27: 362–74.

    PubMed  CAS  Google Scholar 

  19. Francis JL, Biggerstaff J, Amirkhosravi A et al. Hemostasis and malignancy. Semin Thromb Haemost 1998; 24: 93–109.

    Article  CAS  Google Scholar 

  20. Burris HA 3rd, Moore MC, Anderson J et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: A randomized trial. J Clin Oncol 1997; 15: 2403–13.

    PubMed  CAS  Google Scholar 

  21. Katagiri Y, Hiroyama T, Akamatsu N, et al. Involvement of alpha v beta 3 integrin in mediating fibrin gel reaction. J Biol Chem 1995; 270: 1785–90.

    Article  PubMed  CAS  Google Scholar 

  22. Suehiro K, Gailit J, Plow EF. Fibrinogen is a ligand for integrin alpha5beta1 on endothelial cells. J Biol Chem 1997; 272: 5360–6.

    Article  PubMed  CAS  Google Scholar 

  23. Farrell DH, al-Mondhiry HA. Human fibroblast adhesion to fibrinogen. Biochemistry 1997; 36: 1123–8.

    Article  PubMed  CAS  Google Scholar 

  24. Greenberg CS, Dobson JV, Miraglia CC. Regulation of plasma factor XIII binding to fibrin <Emphasis Type="Italic">in vitr</Emphasis>o. Blood 1985; 66: 1028–34.

    PubMed  CAS  Google Scholar 

  25. Engvall E, Ruoslahti E, Miller EJ. Affinity of fibronectin to collagens of different genetic types and to fibrinogen. J Exp Med 1978; 147: 1584–95.

    Article  PubMed  CAS  Google Scholar 

  26. Dvorak HF, Nagy JA, Berse B et al. Vascular permeability factor, fibrin, and the pathogenesis of tumor stroma formation. Ann N Y Acad Sci 1992; 667: 101–11.

    PubMed  CAS  Google Scholar 

  27. Skogen WF, Senior RM, Griffin GL, Wilner GD. Fibrinogen-derived peptide B beta 1-42 is a multidomained neutrophil chemoattractant.Blood 1988; 71: 1475–9.

    PubMed  CAS  Google Scholar 

  28. Languino LR, Duperray A, Joganic KJ et al. Regulation of leukocyte-endothelium interaction and leucocyte transendothelial migration by intercellular adhesion molecule 1-fibrinogen recognition. Proc Natl Acad Sci USA 1995; 92: 1505–9.

    Article  PubMed  CAS  Google Scholar 

  29. Gross TJ, Leavell KJ, Peterson MW. CD11b/CD18 mediates the neutrophil chemotactic activity of fibrin degradation product D domain. Thromb Haemost 1997; 77: 894–900.

    PubMed  CAS  Google Scholar 

  30. Daido R, Koike A, Nomiyama Y et al. Effects of selective administration of anticancer agents in massive doses combined with fibrinolytic enzyme (urokinase) in hepatic cancer. Gan No Rinsho 1972; 18: 285–9 [in Japanese].

    PubMed  CAS  Google Scholar 

  31. Holt JAG. The extra nuclear control of mitosis and cell function. A theory of cellular organization. Med Hypotheses 1980; 6: 145–92.

    Article  PubMed  CAS  Google Scholar 

  32. Thornes RD. Unblocking or activation of the cellular immune mechanism by induced proteolysis in patients with cancer. Lancet 1974; 2: 382–4.

    Article  PubMed  CAS  Google Scholar 

  33. Meehan KR, Zacharski LR, Maurer LH et al. Studies of possible mechanisms for the effect of urokinase therapy in small cell carcinoma of the lung. Blood Coagul Fibrinol 1995; 6: 105–12.

    CAS  Google Scholar 

  34. Petitclerc E, Brooks PC. The chick embryo metastasis model. In Brooks, SA, Schumacher U (eds): Metastasis Research Protocols, Volume II: Analysis of Cell Behavior <Emphasis Type="Italic">in vitro</Emphasis> and <Emphasis Type="Italic">in viv</Emphasis>o.Totowa, New Jersey: Humana Press, 2001; 173–177.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Hoffman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bobek, V., Plachy, J., Pinterova, D. et al. Development of a green fluorescent protein metastatic-cancer chick-embryo drug-screen model. Clin Exp Metastasis 21, 347–352 (2004). https://doi.org/10.1023/B:CLIN.0000046138.58210.31

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CLIN.0000046138.58210.31

Navigation