Skip to main content
Log in

Combining Population Viability Analysis with Decision Analysis

  • Published:
Biodiversity & Conservation Aims and scope Submit manuscript

Abstract

Management of endangered species requires methods to assess the effects of strategies, providing a basis for deciding on a best course of action. An important component of assessment is population viability analysis (PVA). The latter may be formally implemented through decision analysis (DA). These methods are most useful for conservation when used in conjunction. In this paper we outline the objectives and the potential of both frameworks and their overlaps. Both are particularly helpful when dealing with uncertainty. A major problem for conservation decision-making is the interpretation of observations and scientific measurements. This paper considers probabilistic and non-probabilistic approaches to assessment and decision-making and recommends appropriate contexts for alternative approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akçakaya H.R. and Atwood J.L. 1997. A habitat-based metapopulation model of the California Gnatcatcher. Conservation Biology 11: 422-434.

    Google Scholar 

  • Akçakaya H.R., Burgman M.A. and Ginzburg L. 1999. Applied Population Ecology. Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Akçakaya H.R., Ferson S., Burgman M.A., Keith D.A., Mace G.M. and Todd C.R. 2000. Making consistent IUCN classifications under uncertainty. Conservation Biology 14: 1001-1013.

    Google Scholar 

  • Anderson J.L. 1998. Embracing uncertainty: the interface of Bayesian statistics and cognitive psychology. Conservation Ecology [online] 2(1): 2. URL: http://www.consecol.org/vol2/iss1/art2

    Google Scholar 

  • Bakan D. 1960. The test of significance in psychological research. Psychological Bulletin 66: 423-437.

    Google Scholar 

  • Bana e Costa C.A. 1990. (ed), Readings in Multiple Criteria Decision Aid. Springer, Berlin, Germany.

    Google Scholar 

  • Boyce M.S. 1992. Population viability analysis. Annual Review of Ecology and Systematics 23: 481-506.

    Google Scholar 

  • Breininger D.R., Burgman M.A., Akçakaya H.R. and O'Connell M.A. 2002. Use of metapopulations in conservation planning. In: Gutzwiller K. (ed), Applying Landscape Ecology in Biological Conservation. Springer, New York, pp. 405-427.

    Google Scholar 

  • Burgman M.A. 2000. Population viability analysis for bird conservation: theory, practice, models and psychology. Emu 100: 347-353.

    Google Scholar 

  • Burgman M.A. and Lamont B.B. 1992. A stochastic model for the viability of Banksia cuneata populations: environmental, demographic and genetic effects. Journal of Applied Ecology 29: 719-727.

    Google Scholar 

  • Burgman M.A., Breininger D.R., Duncan B.W. and Ferson S. 2001. Setting reliability bounds on habitat suitability indices. Ecological Applications 11: 70-78.

    Google Scholar 

  • Caswell H. 1978. A general formula for the sensitivity of population growth rate to changes in the life history parameters. Theoretical Population Biology 14: 215-230.

    Google Scholar 

  • Caughley G. 1994. Directions in conservation biology. Journal of Animal Ecology 63: 215-244.

    Google Scholar 

  • Clemen R.T. 1996. Making Hard Decisions: An Introduction to Decision Analysis. Duxbury, Pacific Grove, California.

    Google Scholar 

  • Cohen J. 1988. Statistical Power Analysis for the Behavioural Sciences. 2nd edn. Lawrence Erlbaum Associates, Hillsdale, New Jersey.

    Google Scholar 

  • Cohen J. 1994. The Earth is round (p < 0.05). American Psychologist 12: 997-1003.

    Google Scholar 

  • Drechsler M. 1998. Sensitivity analysis of complex models. Biological Conservation 86: 401-412.

    Google Scholar 

  • Drechsler M. 2000. A model-based decision aid for species protection under uncertainty. Biological Conservation 94: 23-30.

    Google Scholar 

  • Drechsler M. 2004. Model-based conservation decision aiding in the presence of goal conflicts and uncertainty. Biodiversity and Conservation 13: 141-164 (this issue).

    Google Scholar 

  • Drechsler M. and Wätzold F. 2001. The importance of economic costs in the development of guidelines for spatial conservation management. Biological Conservation 97: 51-59.

    Google Scholar 

  • Drechsler M., Burgman M.A. and Menkhorst P.W. 1998. Uncertainty in population dynamics and its consequences for the management of the Orange-bellied Parrot Neophema chrysogaster. Biological Conservation 84: 269-281.

    Google Scholar 

  • Eckhoudt L. and Gollier C. 1995. Risk — Evaluation, Management and Sharing. Harvester and Wheatsheaf, New York/London.

    Google Scholar 

  • Elith J. 2000. Quantitative methods for modelling species habitat. In: Ferson S. and Burgman M.A. (eds), Quantitative Methods for Conservation Biology. Springer, New York, pp. 39-58.

    Google Scholar 

  • Fairweather P.G. 1991. Statistical power and design requirements for environmental monitoring. Australian Journal of Marine Freshwater Research 42: 555-567.

    Google Scholar 

  • Falk R. and Greenbaum C.W. 1995. Significance tests die hard. Theory and Psychology 5: 396-400.

    Google Scholar 

  • Ferguson I.S. 1996. Sustainable Forest Management. Oxford University Press, Melbourne, Australia.

    Google Scholar 

  • Fischhoff B., Slovic P. and Lichtenstein S. 1982. Lay foibles and expert fables in judgements about risk. American Statistician 36: 240-255.

    Google Scholar 

  • Fleming D.M., DeAngelis D.L., Gross L.J., Ulanowicz R.E., Wolff W.F., Loftus W.F. et al. 1994. ATLSS: Across-Trophic-Level System Simulation for the Freshwater Wetlands of the Everglades and Big Cypress Swamp. National Biological Service Technical Report. Washington, DC.

  • Fox D.R. 2001. Environmental power analysis — a new perspective. Environmetrics 12: 437-449.

    Google Scholar 

  • Gelman A., Carlin J.B., Stern H.S. and Rubin D.B. 1995. Bayesian Data Analysis. Chapman & Hall, London.

    Google Scholar 

  • Gill J. 1999. The insignificance of null hypothesis significance testing. Political Research Quarterly 52: 647-674.

    Google Scholar 

  • Green R.H. 1995. Aspects of power analysis in environmental monitoring. In: Fletcher D.J. and Manly B.J.F. (eds), Statistics in Ecology and Environmental Monitoring. Otago Conference Series No. 2. University of Otago Press, Dunedin, New Zealand, pp. 173-182.

    Google Scholar 

  • Hanley N. and Spash C.L. 1993. Cost-Benefit Analysis and the Environment (Chapter 1). Edward Elgar, Brookfield, Vermont.

    Google Scholar 

  • Hilborn R. and Ludwig D. 1993. The Limits of Applied Ecological Research. Ecological Applications 3: 550-552.

    Google Scholar 

  • Hilborn R. and Walters C.J. 1992. Quantitative Fisheries Stock Assessment: Choice, Dynamics, and Uncertainty. Chapman & Hall, New York.

    Google Scholar 

  • Howson C. and Urbach P. 1993. Scientific Reasoning. The Bayesian Approach. 2nd edn. Open Court, Chicago, Illinois.

    Google Scholar 

  • IUCN 1994. IUCN Red List Categories. Species Survival Commission. IUCN, Gland, Switzerland.

    Google Scholar 

  • Johnson D.H. 1999. The insignificance of statistical significance testing. Journal of Wildlife Management 63: 763-772.

    Google Scholar 

  • Klepper O. 1997. Multivariate aspects of model uncertainty analysis: tools for sensitivity analysis and calibration. Ecological Modelling 101(1): 1-13.

    Google Scholar 

  • Ludwig D., Hilborn R. and Walters C. 1993. Uncertainty, resource exploitation, and conservation: lessons from history. Science 260: 17-36.

    Google Scholar 

  • Macdonald R.R. 1997. On Statistical Testing in Psychology. British Journal of Psychology 88: 333-349.

    Google Scholar 

  • Maguire L.A. 1986. Using decision analysis to manage endangered species populations. Journal of Environmental Management 22: 345-360.

    Google Scholar 

  • Mapstone B.D. 1995. Scaleable decision rules for environmental impact studies: effect size, Type I and Type II errors. Ecological Applications 5: 401-410.

    Google Scholar 

  • Margules C.R. and Nicholls A.O. 1993. Where should nature reserves be located? In: Moritz C. and Kikkawa J. (eds), Conservation Biology in Australia and Oceania. Surrey Beatty & Sons, Chipping Norton, Australia.

    Google Scholar 

  • May R.M. 1976. Theoretical Ecology. Blackwell, Oxford, UK.

    Google Scholar 

  • Meehl P.E. 1978. Theoretical risks and tabular asterisks: Sir Karl, Sir Ronald, and the slow progress of soft psychology. Journal of Counseling and Clinical Psychology 46: 806-834.

    Google Scholar 

  • Morgan M.G. and Henrion M. 1990. Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Murtaugh P.A. 1996. The statistical evaluation of ecological indicators. Ecological Applications 6: 132-139.

    Google Scholar 

  • O'Hara R.B., Arjas E., Toivonen H. and Hanski I. 2002. Bayesian analysis of metapopulation data. Ecology 83: 2408-2415.

    Google Scholar 

  • Peterman R.M. 1990. Statistical power analysis can improve fisheries research and management. Canadian Journal of Fisheries and Aquatic Sciences 47: 2-15.

    Google Scholar 

  • Portney P.R. and Weyant J.P. (eds), 1999. Discounting and Intergenerational Equity. Resources for the Future, Washington, DC.

    Google Scholar 

  • Possingham H. 1996. Decision theory and biodiversity management: how to manage a metapopulation. In: Floyd R.B., Sheppard A.W. and De Barro P.J. (eds), Frontiers of Population Ecology. CSIRO Publishing, Melbourne, Australia, pp. 391-398.

    Google Scholar 

  • Possingham H. and Shea C. 1999. The Business of Biodiversity. Australian Zoologist 31(1): 3-5.

    Google Scholar 

  • Pressey R.L., Humphries C.J., Margules C.R., Vane-Wright R.I. and Williams P.H. 1993. Beyond opportunism: key principles for systematic reserve selection. TREE 8: 124-128.

    Google Scholar 

  • Punt A. and Hilborn R. 1997. Fisheries stock assessment and decision analysis: the Bayesian approach. Reviews in Fish Biology and Fisheries 7: 35-63.

    Google Scholar 

  • Ralls K. and Starfield A.M. 1995. Choosing a management strategy: two structured decisionmaking methods for evaluating the predictions of stochastic simulation models. Conservation Biology 9: 175-181.

    Google Scholar 

  • Regan H.M., Colyvan M. and Burgman M.A. 2000. A proposal for fuzzy International Union for the Conservation of Nature (IUCN) categories and criteria. Biological Conservation 92: 101-108.

    Google Scholar 

  • Richards S.A., Possingham H.P. and Tizard J. 1999. Optimal fire management for maintaining community diversity. Ecological Applications 9: 880-892.

    Google Scholar 

  • Rosenberg A.A., Fogarty M.J., Sissenwine M.P., Beddington J.R. and Shepherd J.G. 1993. Achieving sustainable use of renewable resources. Science 262: 828-829.

    Google Scholar 

  • Shrader-Frechette K. 1996. Methodological rules for four classes of scientific uncertainty. In: Lemons J. (ed), Scientific Uncertainty and Environmental Problem Solving. Blackwell, Cambridge, Massachusetts, pp. 12-39.

    Google Scholar 

  • Smith A.D.M., Sainsbury K.J. and Stevens R.A. 1999. Implementing effective fisheriesmanagement systems-management strategy evaluation and the Australian partnership approach. ICES Journal of Marine Science 56: 967-979.

    Google Scholar 

  • Sokal R.R. and Rohlf F.J. 1995. Biometry. Freeman, San Francisco, California.

    Google Scholar 

  • Stewart T.J. 1992. A critical survey on the status of multiple criteria decision making-theory and practice. OMEGA International Journal of Management Science 20: 569-586.

    Google Scholar 

  • Tahvonen O. 1995. Dynamics of pollution control when damage is sensitive to the rate of pollution accumulation. Environmental and Resource Economics 5: 9-27.

    Google Scholar 

  • Thompson P.M., Wilson B., Grellier K. and Hamond P.S. 2000. Combining power analysis and population viability analysis to compare traditional and precautionary approaches to conservation of coastal cetaceans. Conservation Biology 14: 1253-1263.

    Google Scholar 

  • Tversky A. and Kahneman D. 1974. Judgement under uncertainty: heuristics and biases. Science 211: 453-458.

    Google Scholar 

  • Underwood A.J. 1995. Things environmental scientists (and statisticians) need to know to receive (and give) better statistical advice. In: Fletcher D.J. and Manly B.J.F. (eds), Statistics in Ecology and Environmental Monitoring. Otago Conference Series No. 2. University of Otago Press, Dunedin, New Zealand, pp. 33-61.

    Google Scholar 

  • Wade P.R. 2000. Bayesian methods in conservation biology. Conservation Biology 14: 1308-1316.

    Google Scholar 

  • Wu J. and Bogess W.G. 1999. The optimal allocation of conservation funds. Journal of Environmental Economics and Management 38: 302-321.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Drechsler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drechsler, M., Burgman, M.A. Combining Population Viability Analysis with Decision Analysis. Biodiversity and Conservation 13, 115–139 (2004). https://doi.org/10.1023/B:BIOC.0000004315.09433.f6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BIOC.0000004315.09433.f6

Navigation