Skip to main content
Log in

Variation in Intake of Sweet and Bitter Solutions by Inbred Strains of Golden Hamsters

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

Variation in intake of sweet and bitter solutions by inbred strains of laboratory mice has helped identify genes related to taste behaviors; but similar information is not available for golden hamsters (Mesocricetus auratus), a species used much in taste research. Thus, 6-hour, 1-bottle intake by water-replete hamsters of 7 inbred strains was measured for water and 2 concentrations of sucrose, maltose, d-phenylalanine (d-Phe), and sodium saccharin, which are sweet; and quinine·HCl, l-phenylalanine (l-Phe), caffeine, and sucrose octaacetate (SOA), which are bitter to humans. Difference scores (DIF), calculated as solution intake minus mean baseline water intake (mL) for each animal, were evaluated by analysis of variance. Compared to ACN, CN, APA, APG, and CBN, five strains with similar DIF for all compounds, GN, an ancestral strain of ACNT, and ACNT preferred sucrose, caffeine, and SOA more strongly; ACNT also preferred saccharin and maltose more strongly and rejected quinine more strongly. Narrow sense heritabilities for the 6 compounds for which strain differences were revealed ranged from 0.31 to 0.57. Genetic correlations indicated the strain variations in intake of sucrose, saccharin, SOA, and caffeine were coupled; a statistical association with several possible interpretations. Intakes of the two amino acids, preferred d-Phe and aversive l-Phe, did not reveal strain differences, and heritability ranged from 0.13 to 0.23 for the two optical isomers. Thus, although, compared to mice, genetic variation in laboratory hamsters may be small, genetic differences that influence taste behaviors in existing strains may help identify relevant genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allen, G. V., Zhou, J., and Hopkins, D. A. (1995). Monoamines in the parabrachial nucleus of the cardiomyopathic hamster. Brain Res. 680:117-127.

    Google Scholar 

  • Azzarra, A. V., and Sclafani, A. (1998). Flavor preferences conditioned by intragastric sugar infusions in rats: maltose is more reinforcing than sucrose. Physiol. Behav. 64:535-561.

    Google Scholar 

  • Bachmanov, A. A., Beauchamp, G. K., and Tordoff, M. G. (2002). Voluntary consumption of NaCl, KCl, CaCl2, and NH4Cl solutions by 28 mouse strains. Behav. Gen. 32:445-457.

    Google Scholar 

  • Bachmanov, A. A., Li, X., Li, S., Neira, M., Beauchamp, G., and Azen, E. A. (2001a). High-resolution genetic mapping of the sucrose octaacetate taste aversion (Soa) locus on mouse chromosome 6. Mamm. Gen. 12:695-699.

    Google Scholar 

  • Bachmanov, A. A., Li, X., Reed, D. R., Ohmen, J. D., Li, S., Chen, Z., Tordoff, M. G., de Jong, P. J., Wu, C., West, D. B., Chatterjee, A., Ross, D. A., and Beauchamp, G. K. (2001b). Positional cloning of the mouse saccharin preference (Sac) locus. Chem. Senses 26:925-933.

    Google Scholar 

  • Bachmanov, A. A., Tordoff, M. G., and Beauchamp, G. K. (2001c). Sweetener preference of C57BL/6ByJ and 129P3/J mice. Chem. Senses 26:905-913.

    Google Scholar 

  • Beidler, L. M., Fishman, I. Y., and Hardiman, C. W. (1955). Species differences in taste responses. Am. J. Physiol. 181:235-239.

    Google Scholar 

  • Berenbaum, M. R. (1995). The chemistry of defense: theory and practice. Proc. Natl. Acad. Sci. U.S.A. 92:2-8.

    Google Scholar 

  • Blizard, D. A. (1992). Analyzing phenotypic correlations in studies with selected lines. Behav. Gen. 22:29-33.

    Google Scholar 

  • Blizard, D. A., and Darvasi, A. (1999). Experimental strategies for quantitative trait loci (QTL) analysis in laboratory animals. In W. E. Crusio and R. T. Gerlai (s.), Handbook of moleculargenetic techniques for brain and behavioral research. Amsterdam: Elsevier Science, pp. 82-99.

    Google Scholar 

  • Blizard, D. A., and Frank, M. E. (1999). Genetic variation in the Syrian hamster: influence on intake of taste solutions. Chem. Senses 24:525(Abstract).

    Google Scholar 

  • Blizard, D. A., Kotlus, B., and Frank, M. E. (1999). Quantitative trait loci associated with short-term intake of sucrose, saccharin and quinine solutions in laboratory mice. Chem. Senses 24:373-385.

    Google Scholar 

  • Breslin, P. A., Beauchamp, G. K., and Pugh, E. N. Jr. (1996). Monogeusia for fructose, glucose, sucrose, and maltose. Percept. Psychophys. 58:327-341.

    Google Scholar 

  • Bufe, B., Hofmann, T., Krautworst, D., Raguse, J-D., and Meyerhof, W. (2002). The human TAS2R16 receptor mediates bitter taste in response to β-glucopyrnanosides. Nature Gen. 32:397-401.

    Google Scholar 

  • Capeless, C. G., and Whitney, G. (1996). The genetic basis of preference for sweet substances among inbred strains of mice: preference ratio phenotypes and the alleles of the sac and dpa loci. Chem. Senses 20:292-298.

    Google Scholar 

  • Chandrashekar, J., Mueller, K. L., Hoon, M. A., Adler, E., Feng, L., Guo, W., Zuker, C. S., and Ryba, N. J. (2000). T2Rs function as bitter taste receptors. Cell 100:703-711.

    Google Scholar 

  • Cho, Y. K., Li, C. S., and Smith, D. V. (2002). Taste responses of neurons of the hamster solitary nucleus are enhanced by lateral hypothalamic stimulation. J. Neurophysiol. 87:1981-1992.

    Google Scholar 

  • Cho, Y. K., Li, C. S., and Smith, D. V. (2003). Descending influences from the lateral hypothalamus and amygdala converge onto medulary taste neurons. Chem. Senses. 28:155-171.

    Google Scholar 

  • Clark, J. D. (1987). Historical perspectives and taxonomy. In G. L. Van Hoosier Jr and C. W. McPherson (s.), Laboratory hamsters, Orlando. FL: Academic Press, pp. 3-7.

    Google Scholar 

  • Coe, J. E., Schell, R. F., and Moss, M. J. (1995). Immune response in the hamster: definition of a novel IgG not expressed in all hamster strains. Immunology 86:141-148.

    Google Scholar 

  • Dallal, G. E. (1992). The 17/10 rule for sample size determinations. American Statistician 26:70.

    Google Scholar 

  • Damak, S., Rong, M., Yasumatsu, K., Kokrashvili, Z., Varadarajan, V., Zou, S., Jiang, P., Ninomiya, Y., and Margolskee, R. F. (2003). Detection of sweet and umami taste in the absence of taste receptor T1r3. Science 301:850-853.

    Google Scholar 

  • Delwiche, J. F., Buletic, Z., and Breslin, P. S. (2001). Covariation in individuals' sensitivities to bitter compounds: evidence supporting multiple receptor/transduction mechanisms. Percept. Psychophys. 63:761-776.

    Google Scholar 

  • Dess, N. K. (1993). Saccharin's aversive taste in rats: evidence and implications. Physiol. Behav. 69:247-257.

    Google Scholar 

  • Dietrich, W., Katz, H., Lincoln, S. E., Shin, H. S., and Friedman, J., Dracopoli, N. C., and Lander, E. S. (1992). A genetic map of the mouse suitable for typing intraspecific crosses. Genetics 13:423-447.

    Google Scholar 

  • Falconer, D. S., and Mackay, T. F. C. (1996). Introduction to quantitative genetics (4th ed.), Harlow, England: Pearson/Prentice Hall.

    Google Scholar 

  • Formaker, B. K., and Frank, M. E. (1996). Responses of the hamster chorda tympani nerve to binary component taste stimuli: evidence for peripheral gustatory mixture interactions. Brain Res. 727:79-90.

    Google Scholar 

  • Formaker, B. K., MacKinnon, B. I., Hettinger, T. P., and Frank, M. E. (1997). Opponent effects of quinine and sucrose on single fiber taste responses of the chorda tympani nerve. Brain Res. 772:239-242.

    Google Scholar 

  • Frank, M. E. (1973). An analysis of hamster afferent taste nerve response functions. J. Gen. Physiol. 61:588-618.

    Google Scholar 

  • Frank, M. E. (2000). Neuron types, receptors, behavior, and taste quality. Physiol. Behav. 69:53-62.

    Google Scholar 

  • Frank, M. E., Bieber, S. L., and Smith, D. V. (1988). The organization of taste sensibilities in hamster chorda tympani nerve fibers. J. Gen. Physiol. 91:861-896.

    Google Scholar 

  • Frank, M. E., and Blizard, D. A. (1999). Chorda tympani responses in two inbred strains of mice with different taste preferences. Physiol. Behav. 67:287-297.

    Google Scholar 

  • Frank, M. E., Bouverat, B. P., MacKinnon, B. I., and Hettinger, T. P. (2004). The distinctiveness of ionic and non-ionic bitter stimuli. Physiol. Behav. 80:421-431.

    Google Scholar 

  • Frank, M. E., Formaker, B. K., and Hettinger, T. P. (2003b). Taste responses to mixtures: analytic processing of quality. Behav. Neurosci. 117:228-235.

    Google Scholar 

  • Frank, M. E., and Nowlis, G. H. (1989). Learned aversions and taste qualities in hamsters. Chem. Senses 14:379-394.

    Google Scholar 

  • Fuller, J. L. (1973). Single-locus control of saccharin preference in mice. J. Hered. 65:33-36.

    Google Scholar 

  • Gattermann, R., Fritzsche, P., Neumann, K., Al-Hussein, I., Kayser, A., Abiad, M., and Yakti, R. (2001a). Notes on the current distribution and ecology of wild golden hamsters (Mesocricetus auratus). J. Zool. Lond. 254:359-365.

    Google Scholar 

  • Gattermann, R., Fritzsche, P., Weinandy, R., and Neumann, K. (2001b). Comparative studies of body mass, body measurements and organ weights of wild-derived and laboratory golden hamsters (Mesocricetus auratus). Lab. Animals 36:445-454.

    Google Scholar 

  • Glendinning, J. I. (1993). Preference and aversion for deterrent chemicals in two species of Peromyscus mouse. Physiol. Behav. 54:141-150.

    Google Scholar 

  • Guo, S. W., and Reed, D. R. (2001). The genetics of phenylthiocarbamide perception. Ann. Hum. Biol. 28:111-142.

    Google Scholar 

  • Hyman, A.M., and Frank, M. E. (1980a). Effects of binary taste stimuli on the neural activity of the hamster chorda tympani. J. Gen. Physiol. 76:125-142.

    Google Scholar 

  • Hyman, A. M., and Frank, M. E. (1980b). Sensitivities of single nerve fibers in the hamster chorda tympani to mixtures of taste stimuli. J. Gen. Physiol. 76:143-173.

    Google Scholar 

  • Inoue, M., Li, X., McCaughey, S. A., Beauchamp, G. K., and Bachmanov, A. A. (2001a). Soa genotype selectivity affects mouse gustatory neural responses to sucrose octaacetate. Physiol. Genomics 5:181-186.

    Google Scholar 

  • Inoue, M., McCaughey, S. A., Bachmanov, A. A., and Beauchamp, G. K. (2001b). Whole nerve chorda tympani responses to sweeteners in C57BL/6ByJ and 129P3/j mice. Chem. Senses 26:915-923.

    Google Scholar 

  • Jacobs, W. W. (1978). Taste responses in wild and domestic guinea pigs. Physiol. Behav. 20:579-588.

    Google Scholar 

  • Kim, U., Jorgenson, E., Coon, H., Leppert, M., Risch, N., and Drayna, D. (2003). Positional cloning of the human quantitative trait locus underlying taste sensitivity to phenylthiocarbamide. Science 299:1221-1225.

    Google Scholar 

  • Kotlus, B. S., and Blizard, D. A. (1998). Measuring gustatory variation in mice: a short-term fluid-intake test. Physiol. Behav. 63:37-47.

    Google Scholar 

  • Li, X., Staszewski, L., Xu, H., Durick, K., Zoller, M., and Adler, E. (2002). Human receptors for sweet and umami taste. Proc. Natl. Acad. Sci. U.S.A. 99:4692-4696.

    Google Scholar 

  • Lush, I. E. (1981). The genetics of tasting in mice. I. Sucrose octaacetate. Genet. Res. 38:93-95.

    Google Scholar 

  • Lush, I. E. (1984). The genetics of tasting in mice. III. Quinine. Genet. Res. 44:151-160.

    Google Scholar 

  • Lush, I. E. (1991). The genetics of sweetness, bitterness and saltiness in strains of mice. In C. J. Wysocki and M. R. Kare (s.), Chemical senses, vol. 3, genetics of perception and communication. New York: Marcel Dekker, pp. 227-241.

    Google Scholar 

  • MacKinnon, B. I., Frank, M. E., Hettinger, T. P., and Rehnberg, B. G. (1999). Taste qualities of solutions preferred by hamsters. Chem. Senses 24:23-35.

    Google Scholar 

  • Mogil, J. S., Wilson, S. G., Bon, K., Lee, S. E., Chung, K., Raber, P., Peiper, J. O., Hain, H. S., Belknap, J. K., Hubert, L., Elmer, G. I., Chung, J. M., and Devor, M. (1999). Heritability of nociception I: Responses of 11 inbred mouse strains on 12 measures of nociception. Pain 80:67-82.

    Google Scholar 

  • Montmayeur, J. P., and Matsunami, H. (2002). Receptors for bitter and sweet taste. Curr. Opin. Neurobiol. 12:366-371.

    Google Scholar 

  • Nelson, G., Hoon, M. A., Chandrashekar, J., Zheng, Y., Ryba, N. J. P., and Zuker, C. S. (2001). Mammalian sweet taste receptors. Cell 106:381-390.

    Google Scholar 

  • Nelson, G., Hoon, M. A., Chandrashekar, J., Hoon, M. A., Feng, L., Zhao, G., Ryba, N. J. P., and Zuker, C. S. (2002). An aminoacid taste receptor. Nature 416:199-202.

    Google Scholar 

  • Ninomiya, Y., Higashi, T., Katsukawa, H., Mizukoshi, T., and Funakoshi, M. (1984). Qualitiative discrimination of gustatory stimuli in three different strains of mice. Brain Res. 322:83-92.

    Google Scholar 

  • Ninomiya, Y., Higashi, T., Mizukoshi, T., and Funakoshi, M. (1987). Genetics of the ability to perceive sweetness of D-phenylalanine in mice. In Olfaction and Taste IX, Ann. NY Acad. Sci. 510:227-229.

    Google Scholar 

  • Ninomiya, Y., Nomura, T., and Katsukawa, H. (1992). Genetically variable taste sensitivity in mice. Brain Res. 596:349-352.

    Google Scholar 

  • Nowlis, G. H., Frank, M. E., and Pfaffmann, C. (1980). Specificity of acquired aversions to taste qualities in hamsters and rats. J. Comp. Physiol. Psychol. 94:932-942.

    Google Scholar 

  • Okuizumi, H., Ohsumi, T., Sasaki, N., Imoto, H., Mizuno, Y., Hanami, T., Yamashita, H., Kamiya, M., Takada, S., Kitamura, A., Muramatsu, M., Nishimura, M., Mori, M., Matsuda, Y., Tagaya, O., Okazaki, Y., and Hayashizaki, Y. (1997). Linkage map of Syrian hamster with restriction landmark genomic scanning. Mamm. Genome 8:121-128.

    Google Scholar 

  • Okazaki, Y., Okuizumi, H., Sasaki, N., Ohsumi, T., Kuromitsu, J., Kataoka, H., Muramatsu, M., Iwadate, A., Hirota, N., Kitajima, M., Plass, C., Chapman, V. M., and Hayashizaki, Y. (1994). A genetic linkage map of the mouse using an expanded production system of restriction landmark genomic scanning (RLGS Ver.1.8). Biochem. Biophys. Res. Commun. 205:1922-1929.

    Google Scholar 

  • Poothullil, J. M. (1992). Maltose: the primary signal of hunger and satiation in human beings. Physiol. Behav. 52:27-31.

    Google Scholar 

  • Shallenberger, R. S. (1993). Taste chemistry. London: Blackie Academic & Professional.

    Google Scholar 

  • Shi, P., Zhang, J., Yang, H., and Zhang, Y. (2003). Adaptive diversification of bitter taste receptor genes in mammalian evolution. Mol. Biol. Evol. 20:805-814.

    Google Scholar 

  • Shingai, T., and Beidler, L. M. (1985). Interstrain differences in bitter taste responses in mice. Chem. Senses 10:51-55.

    Google Scholar 

  • Smith, D. V., and Li, C. S. (2000). GABA-mediated corticofugal inhibition of taste-responsive neurons in the nucleus of the solitary tract. Brain Res. 858:408-415.

    Google Scholar 

  • Smith, D. V., and St. John, S. J. (1999). Neural coding of gustatory information. Curr. Opin. Neurobiol. 9:427-435.

    Google Scholar 

  • Smith, D. V., Van Buskirk, R. L., Travers, J. B., and Bieber, S. L. (1983). Gustatory neuron types in hamster brain stem. J. Neurophysiol. 50:522-540.

    Google Scholar 

  • Spector, A. C., Markison, S., St. John, S. J., and Garcea, M. (1997). Sucrose vs. maltose taste discrimination by rats depends on the input of the seventh cranial nerve. Am. J. Physiol. 272:R1210-R1218.

    Google Scholar 

  • Suzuki, M., Nakai, A., and Kurata, M. (1998). Strain differences in glutathione metabolism in the erythrocyte from Syrian hamster. Exp. Anim. 47:127-129.

    Google Scholar 

  • Vitaterna, M. H., and Turek, F. W. (1993). Photoperiodic responses differ among inbred strains of golden hamsters (Mesocricetus auratus). Biol. Reprod. 49:496-501.

    Google Scholar 

  • Weinert, D., Fritzsche, P., and Gattermann, R. (2001). Activity rhythms of wild and laboratory hamsters (Mesocricetus auratus) under entrained and free-running conditions. Chronobiol. Internat. 36:445-454.

    Google Scholar 

  • Whitney, G., and Harder, D. B. (1994). Genetics of bitter perception in mice. Physiol. Behav. 56:1141-1147.

    Google Scholar 

  • Wong, R. (1994). Response latency of gerbils and hamsters to nuts flavoured with bitter-tasting substances. Q. J. Exp. Psychol. B 47:173-186.

    Google Scholar 

  • Wong, R., and McBride, C. B. (1993). Flavour neophobia in gerbils (Meriones unguiculatus) and hamsters (Mesocricetus auratus). Q. J. Exp. Psychol. B 46:129-143.

    Google Scholar 

  • Zhang, Y., Hoon, M. A., Chandrashekar, J., Mueller, K. L., Cook, B., Wu, D., Zuker, C. S., and Ryba, N. J. (2003). Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 112:293-301.

    Google Scholar 

  • Zhao, G. Q., Zhang, Y., Hoon, M. A., Chandrashekar, J., Erlenbach, I., Ryba, N. J., and Zuker, C. S. (2003). The receptors for mammalian sweet and umami taste. Cell 115:255-266.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frank, M.E., Wada, Y., Makino, J. et al. Variation in Intake of Sweet and Bitter Solutions by Inbred Strains of Golden Hamsters. Behav Genet 34, 465–476 (2004). https://doi.org/10.1023/B:BEGE.0000023651.99481.d5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BEGE.0000023651.99481.d5

Navigation