Skip to main content
Log in

A comparison of nine species of arbuscular mycorrhizal fungi on the development and nutrition of micropropagated Rubus idaeus L. cv. Glen Prosen (Red Raspberry)

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Growth, development and nutrient status of micropropagated Rubus idaeus cv. Glen Prosen in response to inoculation with nine species of arbuscular mycorrhizal (AM) fungi from three different genera was investigated. The nine species of AM fungi included, Glomus clarum, G. etunicatum, G. intraradices, Gigaspora rosea, Gi. gigantea, Gi. margarita, Scutellospora calospora, S. heterogama and S. persica. Plant responses to AM fungi varied from growth enhancement to growth depression. Depressive growth effects were specific to Gigaspora species. Furthermore, particular species of AM fungi had unique effects on the mineral status of the raspberry plants. Importance of isolate selection for inoculation of micropropagated raspberry plants is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott L K and Robson A D 1985 The effect of soil pH on the formation of VA mycorrhizas by two species of Glomus Austral. J. Soil Res. 23, 253–261.

    Article  Google Scholar 

  • Azcon-Aguilar C, Padilla I G, Encina C L, Azcon R and Barea J M 1996 Arbuscular mycorrhizal fungal inoculation enhances plant growth and changes root system morphology in micropropagated Annona cherimola Mill. Agronomie 16, 647–652.

    Google Scholar 

  • Azcon R and Ocampo J A, 1981 Factors affecting the vesiculararbuscular infection and mycorrhizal dependency of thirteen wheat cultivars. New Phytol. 87, 677–685.

    Article  CAS  Google Scholar 

  • Bartschi H, Gianinazzi-Pearson V and Vegh I 1981 Vesicular arbuscular mycorrhiza formation and root rot disease Phytophthora cinnamomi development in Chamaecyparis lawsonia. Phytopath Z 102, 213–218.

    Google Scholar 

  • Berta G, Trotta A, Hooker J, Munro M, Atkinson D, Giovanetti M, Marini S, Loreti F, Tisserant B, Gianinazzi-Pearson V and Gianinazzi S 1995 The effects of arbuscular mycorrhizal infection on plant growth, root system morphology and soluable protein content in Prunus cerasifera L. Tree Physiol. 15, 281–293.

    PubMed  Google Scholar 

  • Bianciotto V, Bandi C, Minerdi D, Sirom M, Volker-Tichy H and Bonfante P 1996 An obligately endosymbiotic mycorrhizal fungus itself harbours obligately intracellular bacteria. Appl. Environ. Micro. 62, 3005–3010.

    CAS  Google Scholar 

  • Buwalda J G and Goh KM1982 Host-fungus competition for C as a cause of growth depressions in vesicular-arbuscular mycorrhizal rye-grass. Soil Biol. Biochem. 14, 103–106.

    Article  CAS  Google Scholar 

  • Brazanti B, Gianinazz-Pearson V and Gianinazzi S 1992 Influence of phosphate fertilisation on the growth and nutrient status of micropropagated apple infected with endomycorrhizal fungi during the weaning stage. Agronomie 12, 841–845.

    Google Scholar 

  • Cassels A C, Mark G L and Periappuram C 1996 Establishment of arbuscular mycorrhizal fungi in autotrophic strawberry cultures in vitro. Comparison with inoculation of microplants in vivo. Agronomie 16, 625–632.

    Google Scholar 

  • Cordier C, Trouvelot A, Gianiazzi S and Gianninazzi-Pearson V 1996 Arbuscular mycorrhiza technology applied to micropropagated Prunus avium and to protection against Phytophthora cinnamomi. Agronomie 16, 679–688.

    Google Scholar 

  • Cress W A, Johnson G V and Barton L L 1986 The role of endomycorrhizal fungi in iron uptake by Hilaria jamesii. J. Pl. Nut. 9, 547–556.

    Google Scholar 

  • Fortuna P, Citernesi A, Morini S, Giovannetti M and Loreti F 1992 Infectivity and effectiveness of different species of arbuscular mycorrhizal fungi in microporpagated plants of Mr S2/5 plum root stock. Agronomie 12, 825–829.

    Google Scholar 

  • Grace C and Stribley D J 1991 A safer procedure for root staining of vesicular arbuscular mycorrhizal fungi. Mycol. Res. 95, 1160–1162.

    Google Scholar 

  • Graham J H and Eissensta D M 1994 Host genotype and formation and function of VA mycorrhizae. Plant Soil 159, 179–185.

    Google Scholar 

  • Guillemin J P, Gianinazzi S and Trouvelot A 1992 Screening of arbuscular endomycorrhizal fungi for establishment of micropropagated pineapple plants. Agronomie 12, 831–836.

    Google Scholar 

  • Guillemin J P, Gianinazzi S, Gianinazzi-Pearson V and Marchal J 1994 Contribution of arbuscular mycorrhizas to biological protection of micropropagated pineapple (Nananas comosus (L) Merr.) against Phytophthora cinnamomi Rands. Agri. Sci. Finl. 3, 241–251.

    Google Scholar 

  • Harley J L and Smith S E 1983 Mycorrhizal Symbiosis. London/ New York. Academic Press.

    Google Scholar 

  • Haselwandter K 1995 Mycorrhizal fungi: Siderophore Production. Crit. Rev. Biotech. 15, 287–291

    CAS  Google Scholar 

  • Hewitt E J 1966 Sand and water culture methods used in the study of plant nutrition. Technical Communication 22, Commonwealth Agricultural Bureaux, Farnham Royal UK.

    Google Scholar 

  • Johnson N C, Graham J H and Smith F A 1997 Functioning of mycorrhizal associationd along the mutualism-parasitism continuum. New Phytol. 35, 575–585.

    Article  Google Scholar 

  • Lambert D H and Cole H 1980 Effects of mycorrhizae on establishment and performance of forage species in mine spoil. Agronomy J. 72, 257–260.

    Article  Google Scholar 

  • Lovato P E, Hammatt N H, Gianinazzi-Pearson V and Gianinazzi S 1994 Mycorrhization of micropropagated mature wild cherry Prunus avium L and common ash Fraxinus excelsior L. Agric. Sci. Finl. 3, 297–301.

    Google Scholar 

  • Marschner H and Dell B 1993 Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159, 89–102.

    Google Scholar 

  • Menge J A, Johnston E L V and Platt R G 1978 Mycorrhizal dependency of several cultivars under three nutrient regimes. New Phytol 1, 553–559.

    Article  Google Scholar 

  • Mosse B 1972 The influence of soil type and Endogone strain on the growth of mycorrhizal plants grown in phosphate deficient soils. Rev. Ecol. Biol. Sol. 9, 529–537

    CAS  Google Scholar 

  • Murphy J and Riley J P 1962 A modified single solution method for determination of in natural waters. Anal. Chim. Acta 27, 31.

    Article  CAS  Google Scholar 

  • Newsham K K, Fitter A H and Watterson A R 1995. Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. J. Ecol. 83, 991–1000.

    Article  Google Scholar 

  • O'Bannon J H, Evans D W and Peaden R N 1980 Alfalfa varietal response to seven isolates of VA mycorrhizal fungi. Can. J. Plant Sci. 60, 859–863.

    Article  Google Scholar 

  • Ponders F 1984 Growth and development of potted white ash and black walnut fertilized by two methods. Can. J. Bot. 62, 509–512.

    Article  Google Scholar 

  • Reith JWS, Inkson R H E, Scott N M, Caldwell K S, Ross J A C and Simpson W E 1987 Estimates of soil phosphorous for different soil series. Fert. Res. 11, 123–142.

    Article  CAS  Google Scholar 

  • Ricken B and Hofner W 1996 Effect of Arbuscular Mycorrhizal fungi (AMF) on heavy-metal tolerance of Alfafa (Medicago sativa L.) and Oat (Avena sativa L.) on a sewage sludge treated soil. Zeit Planzen Boken 159, 189–194.

    CAS  Google Scholar 

  • Sanders F E, Tinker P B, Black R L and Palmerley S M 1977 The development of endomycorrhizal root system I. Spread of infection and growth promoting effects wit four species of vesicular arbuscular mycorrhizae. New Phytol 78, 257–268.

    Article  Google Scholar 

  • Schenck N C and Smith G S 1982 Responses of six species of vesicular-arbuscular mycorrhizal fungi and their effects on soybean at four soil temperatures. New Phytol. 92, 193–201.

    Article  Google Scholar 

  • Smith F A and Smith S E 1996 Mutualism and parasitism: diversity in function and structure in the ‘Arbuscular’ (VA) mycorrhizal symbiosis. Adv. Bot. Res. 22, 1–43.

    Google Scholar 

  • Soberon J M and Martinez del Rio C 1985 Cheating and taking advantage in mutualistic associations. In The Biology ofMutualism Ecology and Evolution, Ed. DH Boucher. pp 192–216. Croom Helm, London.

    Google Scholar 

  • Subhan S, Sharmila P and Saradhi P 1998 Glomus fasciculatum alleviates transplantation shock of micropropagated Sesbania sesban. Plant Cell. Rep. 7, 268–272.

    Article  Google Scholar 

  • Subramanian K S, Charest C, Dwyer L M and Hamilton R I 1995 Arbuscular mycorrhizas and water relations in Maize under drought stress at Tasseling. New Phytol. 129, 643–650.

    Article  Google Scholar 

  • Trouvelot A, Kough J L and Gianinazzi-Pearson V 1986 Mesure du taux de mycorhization VA d'un systeme radiculaire. Recherche de methodes d'estimation ayant une signification fonctionelle. In Physiological and Genetic Aspects of Mycorrhizae. Eds. V Gianinazzi-Pearson and S Gianinazzi. pp. 127–221. INRA Press, Paris.

    Google Scholar 

  • Van Nuffelen M and Schenck N C 1984 Spore germination, penetration and root colonisation of six species of vesicular-arbuscular mycorrhizal fungi on soybean. Can. J. Bot. 62, 624–628.

    Article  Google Scholar 

  • Vonreichenbach H G and Schonbeck F 1995 Influence of VAmycorrhiza on drought tolerance of Flax (Linum usitatissimum L.). 2. Effect of VA-mycorrhiza on stomatal Gas exchange, shoot water potential, phosphorous-nutrition and the accumulation of stress metabolites. J, 183–188.

  • Wang H, Paront S, Gossolin A and Desjardins Y 1993 Vesiculararbuscular mycorrhizal peat based substrates enhance symbiosis establishment and growth of three micropropagated species. J. Am. Soc. Hort. Sci. 118, 896–901.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, J., Harrier, L. A comparison of nine species of arbuscular mycorrhizal fungi on the development and nutrition of micropropagated Rubus idaeus L. cv. Glen Prosen (Red Raspberry). Plant and Soil 225, 53–61 (2000). https://doi.org/10.1023/A:1026519431096

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026519431096

Navigation