Skip to main content
Log in

On Positive Sasakian Geometry

  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

A Sasakian structure \(\mathcal{S}\)=(\xi,\eta,\Phi,g) on a manifold Mis called positiveif its basic first Chern class c1(\(\mathcal{F}\) ξ) can be represented by a positive (1,1)-form with respect to its transverse holomorphic CR-structure. We prove a theorem that says that every positive Sasakian structure can be deformed to a Sasakian structure whose metric has positive Ricci curvature. This provides us with a new technique for proving the existence of positive Ricci curvature metrics on certain odd dimensional manifolds. As an example we give a completely independent proof of a result of Sha and Yang that for every nonnegative integer kthe 5-manifolds k#(S 2×S 3) admits metrics of positive Ricci curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Boyer, C. P. and Galicki, K.: On Sasakian–Einstein geometry, Internat. J. Math. 11(2000), 873–909.

    Google Scholar 

  2. Boyer, C. P. and Galicki, K.: New Einstein metrics in dimension five, math.DG/ 0003174; J. Diff. Geom. 57(2001), 443–463.

    Google Scholar 

  3. Boyer, C. P. and Galicki, K.: Rational homology 5-spheres with positive Ricci curvature, Math. Res. Lett. 9(2002), 521–528.

    Google Scholar 

  4. Boyer, C. P., Galicki, K. and Nakamaye, M.: On the geometry of Sasakian–Einstein 5-manifolds, math.DG/0012047, Math. Ann. 325(2003), 485–524.

    Google Scholar 

  5. Boyer, C. P., Galicki, K. and Nakamaye, M.: Sasakian–Einstein structures on 9#(S 2× S 3), math.DG/0102181; Trans. Amer. Math. Soc. 354(2002), 2983–2996.

    Google Scholar 

  6. Boyer, C. P., Galicki, K. and Nakamaye, M.: Sasakian geometry, homotopy spheres and positive Ricci curvature, Topology, 42(2003), 981–1002.

    Google Scholar 

  7. Braun, V. and Lui, C.-H.: On extremal transitions of Calabi–Yau threefolds and the singularity of the associated 7-space from rolling, hep-th/9801175 v2.

  8. Demailly, J.-P. and Kollár, J.: Semi-continuity of complex singularity exponents and Kähler–Einstein metrics on Fano orbifolds, Ann. Sci. Ecole Norm. Sup. Paris 34(2001), 525–556.

    Google Scholar 

  9. El Kacimi-Alaoui, A.: Opérateurs transversalement elliptiques sur un feuilletage riemannien et applications, Compositio Math. 79(1990), 57–106.

    Google Scholar 

  10. El Kacimi-Alaoui, A. and Nicolau, M.: On the topological invariance of the basic cohomology, Math. Ann. 295(1993), 627–634.

    Google Scholar 

  11. Hasegawa, I. And Seino, M.: Some remarks on Sasakian geometry–applications of Myers’ theorem and the canonical affine connection, J. Hokkaido Univ. Education 32(1981), 1–7.

    Google Scholar 

  12. Johnson, J. M. and Kollár, J.: Kähler–Einstein metrics on log del Pezzo surfaces in weighted projective 3-space, Ann. Inst. Fourier 51(1) (2001) 69–79.

    Google Scholar 

  13. Milnor, J.: Singular Points of Complex Hypersurfaces, Ann. of Math. Stud. 61, Princeton Univ. Press, 1968.

  14. Milnor, J. and Orlik, P.: Isolated singularities defined by weighted homogeneous polynomials, Topology 9(1970), 385–393.

    Google Scholar 

  15. Moroianu, S.: Parallel and Killing spinors on Spinc-manifolds, Comm. Math. Phys. 187(1997), 417–427.

    Google Scholar 

  16. Smale, S.: On the structure of 5-manifolds, Ann. Math. 75(1962), 38–46.

    Google Scholar 

  17. Sha, J.-P. and Yang, D.-G.: Positive Ricci curvature on the connectedsums of S n× S m, J. Differential Geom. 33(1991), 127–137.

    Google Scholar 

  18. Tondeur, Ph.: Geometry of Foliations, Monogr. Math., Birkhäuser, Boston, 1997.

    Google Scholar 

  19. Yano, K. and Kon, M.: Structures on Manifolds, Ser. Pure Math. 3, World Scientific, Singapore, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyer, C.P., Galicki, K. & Nakamaye, M. On Positive Sasakian Geometry. Geometriae Dedicata 101, 93–102 (2003). https://doi.org/10.1023/A:1026363529906

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026363529906

Navigation