Skip to main content
Log in

Searching for quantitative trait loci controlling root traits in maize: a critical appraisal

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

The identification of quantitative trait loci (QTLs) for root traits can provide useful indications on their genetic basis and the associated effects on grain yield under different water regimes. Furthermore, the availability of molecular markers linked to QTLs controlling variation for root traits and grain yield will allow for the implementation of marker-assisted selection to improve productivity. In maize (Zea mays L.), four mapping populations have been investigated to locate QTLs for root traits under controlled conditions and/or in the field. A comparative analysis of the QTL results was carried out based on the availability of molecular markers common to the investigated populations and the UMC maize reference map. Several chromosome regions affected root traits in two or even three populations. A number of these regions also affected grain yield under well-watered and/or drought-stressed conditions. The most important QTL effects were detected on chromosome bins 1.03, 1.06, 1.08, 2.03, 2.04, 7.02, 8.06 and 10.04. Exploiting the syntenic information available for maize and rice, a number of QTLs for root traits described in rice were found to map in regions syntenic to a number of the listed maize chromosome bins (e.g., bin 2.04). The development of near isogenic lines (NILs) for the most important QTLs will allow to investigate whether the concomitant effects of the QTLs on root traits and grain yield are due to linkage and/or pleiotropy and, ultimately, may offer the opportunity to clone the genes underlying such QTLs. Although QTL analysis remains a resource-demanding undertaking, its integration with genomics and post-genomics approaches will play an increasingly important role for the identification of genes affecting root characteristics and grain yield in maize and for harnessing the favourable allelic variation at such loci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrama H A S and Moussa M E 1996 Mapping QTLs in breeding for drought tolerance in maize (Zea mays L.). Euphytica 91, 89–97.

    Google Scholar 

  • Agrama H A S, Zakaria A G, Said F B and Tuinstra M 1999 Identification of quantitative trait loci for N use efficiency in maize. Mol. Breed. 5, 187–195.

    Google Scholar 

  • Ali M L, Pathan M S, Zhang J, Bai G, Sarkarung S and Nguyen H T 2000 Mapping QTLs for root traits in a recombinant inbred population from two indica ecotypes in rice. Theor. Appl. Genet. 101, 756–766.

    Google Scholar 

  • Alonso-Blanco C and Koornneef M 2000 Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics. Trends Plant Sci. 5, 22–29.

    PubMed  Google Scholar 

  • Araki H and Iijima M 1998 Rooting nodes of deep roots in rice and maize grown in a long tube. Plant Prod. Sci. 1, 242–247.

    Google Scholar 

  • Araki H, Hirayama M, Hirasawa H and Iijima M 2000 Which roots penetrate the deepest in rice and maize root system? Plant Prod. Sci. 3, 281–288.

    Google Scholar 

  • Arihara J and Crosbie T M 1982 Relationships among seedling and mature root system traits of maize. Crop Sci. 22, 1197–1202.

    Google Scholar 

  • Bhattramakki D, Dolan M, Hanatey M, Wineland R, Vaske D, Register J C II, Tingey S V and Rafalski A 2002 Insertion-deletion polymorphisms in 3 regions of maize genes occur frequently and can be used as highly informative genetic markers. Plant Mol. Biol. 48, 539–547.

    PubMed  Google Scholar 

  • Beavis W D 1994 The power and deceit of QTL experiments: lessons from comparative QTL studies. Proceedings of the 49th Annual Corn and Sorghum Research Conference American Seed Trade Association, Washington, DC, pp 250–266.

  • Beavis W D 1998 QTL analysis: power, precision, and accuracy. In Molecular Dissection of Complex Traits. Ed. A H Paterson. pp. 145–162. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Beck D L, Darrah L L and Zuber M S 1987 An improved technique for measuring resistance to root pulling in maize. Crop Sci. 27, 356–358.

    Google Scholar 

  • Bensen R J, Johal G S, Crane V C, Tossberg J T, Schnable P S, Meeley R B and Briggs S P 1995 Cloning and characterization of the maize An1 gene. Plant Cell 7, 75–84.

    PubMed  Google Scholar 

  • Bernacchi D, Beck-Bunn T, Eshd Y, Lopez J, Petiard V, Uhlig J, Zamir D and Tanksley S 1998 Advanced backcross QTL analysis in tomato. I. Identification of QTLs for traits of agronomic importance from Lycopersicon hirsutum. Theor. Appl. Genet. 97, 381–397.

    Google Scholar 

  • Blum A 1997 Constitutive traits affecting plant performance under stress. In Developing Drought and low-N Tolerance Maize. Eds. G O Edmeades, M Bänziger, H R Mickelson and C B Peña-Valdivia. pp. 131–135. CIMMYT, El Batan.

    Google Scholar 

  • Blum A, Zhang J X, Nguyen H T and Zhang J X 1999 Consistent differences among wheat cultivars in osmotic adjustment and their relationship to plant production. Field Crops Res. 64, 287–291.

    Google Scholar 

  • Bolaños J, Edmeades G O and Martinez L 1993 Eight cycles of selection for drought tolerance in lowland tropical maize. III. Responses in drought adaptive physiological and morphological traits. Field Crops Res. 31, 269–286.

    Google Scholar 

  • Bruce W B, Folkerts O, Garnaat C, Crasta O, Roth B and Bowen B 2000 Expression profiling of the maize flavonoid pathway genes controlled by estradiol-inducible transcription factors CRC and P. Plant Cell 12, 65–79.

    PubMed  Google Scholar 

  • Bruce WB, Desbons P, Crasta O and Folkerts O 2001 Gene expression profiling of two related maize inbred lines with contrasting root-lodging traits. J. Exp. Bot. 52, 459–468.

    PubMed  Google Scholar 

  • Bruce W B, Edmeades G O and Barker T C 2002 Molecular and physiological approaches to maize improvement for drought tolerance. J. Exp. Bot. 53, 13–25.

    PubMed  Google Scholar 

  • Bus V, Ranatunga C, Gardiner S, Bassett H, Rikkerink E, Geibel M and Fischer C 2000 Marker-assisted selection for pest and disease resistance in the New Zealand apple breeding programme. Acta Hort. 538, 541–547.

    Google Scholar 

  • Carter P R and Hudelson K B 1988 Influence of simulated wind lodging on corn growth and grain yield. J. Prod. Agric. 1, 295–299.

    Google Scholar 

  • Causse M, Santoni S, Damerval C, Maurice A, Charcosset A, Deatrick J and de Vienne D 1996 A composite map of expressed sequences in maize. Genome 39, 418–432.

    Google Scholar 

  • Champoux M C, Wang G, Sarkarung S, Mackill D J, O'Toole J C, Huang N and McCouch S R 1995 Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theor. Appl. Genet. 90, 969–981.

    Google Scholar 

  • Charcosset A and Gallais A 1996 Estimation of the contribution of quantitative trait loci (QTL) to the variance of a quantitative trait by means of genetic markers. Theor. Appl. Genet. 93, 1193–1201.

    Google Scholar 

  • Churchill G A and Doerge RW1994 Empirical threshold values for quantitative trait mapping. Genetics 138, 963–971.

    PubMed  Google Scholar 

  • Clarke J M and McCaig T N 1993 Breeding for efficient root systems. In Plant Breeding. Principles and Prospects. Eds. M D Hayward, M O Osemark and I Ramagosa. pp. 485–499. Chapmann & Hall, London.

    Google Scholar 

  • Damerval C, Maurice A, Josse JM and de Vienne D 1994 Quantitative trait loci underlying gene product variation: a novel perspective for analyzing regulation of genome expression. Genetics 137, 289–301.

    PubMed  Google Scholar 

  • Darvasi A, Weintreb A, Minke V, Weller J I and Soller M 1993 Detection of marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics 134, 943–951.

    PubMed  Google Scholar 

  • Davis G L, McMullen MD, Baysdorfer C, Musket T, Grant D, Staebell M, Xu G, Polacco M, Koster L, Melia-Hancock S, Houchins K, Chao S and Coe E H Jr 1999 A maize map standard with sequenced core markers, grass genome reference points and 932 expressed sequence tagged sites (ESTs) in a 1736-locus map. Genetics 152, 1137–1172.

    PubMed  Google Scholar 

  • Devos K M, Beales J, Nagamura Y and Sasaki T 1999 Arabidopsisrice: will colinearity allow gene prediction across the eudicotmonocot divide? Genome Res. 9, 825–829.

    PubMed  Google Scholar 

  • Deyholos M K and Galbraith D W 2001 High-density microarray for gene expression analysis. Cytometry 1, 229–238.

    Google Scholar 

  • Doebley J, Stec A and Gustus C 1995 Teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141, 333–346.

    PubMed  Google Scholar 

  • Doebley J, Stec A and Hubbard L 1997 The evolution of apical dominance in maize. Nature 386, 485–488.

    PubMed  Google Scholar 

  • Doyle G G 1978 An ageotropic primary root mutant. Maize Genet. Coop. Newsl. 52, 77.

    Google Scholar 

  • Duparque A and Pellerin S 1990 Some morphological characters of maize root and shoot systems and their relationship with resistance to root lodging. In Proceeding of the First Congress of the European Society of Agronomy 5–7 Dec. Ed. A Scaife. pp. 43. ESA, Colomar.

    Google Scholar 

  • El-Assal S E D, Alonso Blanco C, Peeters A JM, Raz V and Koornneef M 2001. A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nat. Genet. 29, 435–440.

    PubMed  Google Scholar 

  • Ennos A R, Crook M J and Grimshaw C 1993 The anchorage mechanics of maize, Zea mays. J. Exp. Bot. 44, 147–153.

    Google Scholar 

  • Falconer D S 1981 Introduction to Quantitative Genetics. 2nd ed. Longman Inc., London.

    Google Scholar 

  • Fincher R R, Darrah L L and Zuber M S 1985 Root development in maize as measured by vertical pulling resistance. Maydica 30, 383–394.

    Google Scholar 

  • Flint J and Mott R 2001 Finding the molecular basis of quantitative traits: successes and pitfalls. Nat. Genet. 2, 437–445.

    Google Scholar 

  • Forster B P, Ellis R P, Thomas W T, Newton A C, Tuberosa R, This D, el-Enein R A, Bahri M H and Ben Salem M 2000 The development and application of molecular markers for abiotic stress tolerance in barley. J. Exp Bot. 51, 18–27.

    Google Scholar 

  • Frary A, Nesbitt T C, Frary A, Grandillo S, van der Knaap E, Cong B, Liu J P, Meller J, Elber R, Alpert K B and Tanksley S D 2000 A quantitative trait locus key to the evolution of tomato fruit size. Science 289, 85–88.

    PubMed  Google Scholar 

  • Fridman E, Pleban T and Zamir D 2000 A recombination hot spot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc. Natl. Acad. Sci. USA 97, 4718–4723.

    PubMed  Google Scholar 

  • Gale MD and Devos KM1998 Comparative genetics in the grasses. Proc. Natl. Acad. Sci. USA 3, 1971–1974.

    Google Scholar 

  • George E, Marschner H and Jakobsen I 1995 Role of arbuscular mycorrhizal fungi in uptake of phosphorus and nitrogen from soil. Crit. Rev. Biotech. 15, 257–270.

    Google Scholar 

  • Giuliani M M, Darrah L L, Salvi S, Sanguineti M C, Landi P, Conti S and Tuberosa R 2000 Comparative QTL analysis in maize for vertical root pulling resistance in the field and root traits in hydroponics. Abstracts of the 'Plant & Animal Genome VIII' Conference, 9–12 January, San Diego, CA, pp. 114.

  • Graham G I, Wolff D W and Stuber C W 1997 Characterization of a yield quantitative trait locus on chromosome five of maize by fine mapping. Crop Sci. 37, 1601–1610.

    Google Scholar 

  • Guingo E and Hébert Y 1997 Relationships between mechanical resistance of the maize root system and root morphology, and their genotypic and environmental variation. Maydica 42, 265–274.

    Google Scholar 

  • Guingo E, Hébert Y and Charcosset A 1998 Genetic analysis of root traits in maize. Agronomie 18, 225–235.

    Google Scholar 

  • Hallauer A R, Miranda Fo J B 1988 Quantitative Genetics in Maize Breeding. 2nd ed. Iowa State University Press, Ames, IA.

    Google Scholar 

  • Harjes C E, Smith M E, McCouch S R and Tanksley S D 1999 Advanced backcross QTL analysis and introgression of perennial teosinte (Zea diploperennis) allele to maize. Abstracts of the 'Plant & Animal Genome VII' Conference, 17–21 January San Diego, CA, pp. 260.

  • Hébert Y, Barrière Y and Bertholeau J C 1992 Root lodging resistance in forage maize: genetic variability of root system and aerial part. Maydica 37, 173–183.

    Google Scholar 

  • Helentjaris T, Wright S and Weber D 1986 Construction of a genetic linkage map in maize using restriction fragment polymorphisms. Maize Genet. Coop. Newslett. 60, 118–120.

    Google Scholar 

  • Hemamalini G S, Shashidhar H E and Hittalmani S 2000 Molecular marker-assisted tagging of morphological and physiological traits under two contrasting moisture regimes at peak vegetative stage in rice (Oryza sativa L.). Euphytica 112, 69–78.

    Google Scholar 

  • Hirel B, Bertin P, Quilleré I, Bourdoncle W, Attagnant C, Dellay C, Gouy A, Cadiou S, Retailliau C, Falque M and Gallais A 2001 Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiol. 125, 1258–1270.

    PubMed  Google Scholar 

  • Hochholdinger F and Feix G 1998 Early post-embryonic root formation is specifically affected in the maize mutant Irtl. Plant J. 16, 247–255.

    Google Scholar 

  • Hochholdinger F, Park W J and Feix G 1998 Isolation of the new root mutant slrl affecting lateral root formation. Maize Genet. Coop. Newslett. 72, 29–30.

    Google Scholar 

  • Holbert J R and Koehler B 1924 Anchorage and extent of corn root system. J. Agric. Res. 27, 71–78.

    Google Scholar 

  • Hu X, Ribaut J M and Gonzales-de-Leon D 1997 Development of PCR-based markers to facilitate large-scale screening in molecular maize breeding. Maize Genet. Coop. Newslett. 71, 61–62.

    Google Scholar 

  • Jaccoud D, Peng K, Feinstein D and Kilian A 2000 Diversity array: a solid state technology for sequence information indipendent genotyping. Nucleic Acids Res. 15, E25.

    Google Scholar 

  • Jansen R C 1993 Interval mapping of multiple quantitative trait loci. Genetics 135, 205–211.

    PubMed  Google Scholar 

  • Jansen R C and Stam P 1994 High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136, 1447–1455.

    PubMed  Google Scholar 

  • Jansen R C, Van Ooijen JW, Stam P, Lister C and Dean C 1995 Genotype by environment interaction in genetic mapping of multiple quantitative trait loci. Theor. Appl. Genet. 91, 33–37.

    Google Scholar 

  • Jenison J R, Shank D B and Penny L H 1981 Root characteristics of 44 maize inbreds evaluated in four environments. Crop Sci. 21, 233–237.

    Google Scholar 

  • Jesko T 2001 Root aspects in plant strategies for overcoming drought resistance. Proc. of the 6th Symposium of the Int. Soc. of Root Research, 11–15 November 2001, Nagoya, Japan, pp. 70–71.

  • Kaeppler S M, Parke J L, Mueller S M, Senior L, Stuber C and Tracy W F 2000 Variation among maize inbred lines and detection of quantitative trait loci for growth at low phosphorus and responsiveness to arbuscular mycorrhizal fungi. Crop Sci. 40, 358–364.

    Google Scholar 

  • Kage H 1997 Relative contribution of mass flow and diffusion to nitrate transport towards roots. Z. Pflanzenernähr. Bodenkd. 160, 171–178.

    Google Scholar 

  • Kao C H and Zeng Z B 2002 Modelling epistasis of quantitative trait loci using Cockerham's model. Genetics 160, 1243–1261.

    PubMed  Google Scholar 

  • Kawasaki S, Deyholos M, Borchert C, Brazille S, Kawai K, Galbraith D W and Bohnert H J 2001 Temporal succession of salt stress responses in rice by microarray analysis. Plant Cell 12, 889–905.

    Google Scholar 

  • Kevern T C and Hallauer A R 1983 Relation of vertical root-pull resistance and flowering in maize. Crop Sci. 23, 357–363.

    Google Scholar 

  • Khavkin E and Coe E 1997 Mapped genomic locations for developmental functions and QTLs reflect concerted groups in maize (Zea mays L.). Theor. Appl. Genet. 95, 343–352.

    Google Scholar 

  • Kiesselbach T A 1949 The structure and reproduction of corn. Agricultural Experiment Station, Lincoln, Research bulletin no. 161.

  • Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T and Yano M2002. Hd3a, a rice orthologue of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Physiol. 43, 1096–1105.

    Google Scholar 

  • Krebs O, Feix G, Beaumont V and Schwall M 1999 Mapping of the root specific rtcs locus with the help of microsatellites. Maize Genet. Coop. Newslett. 73, 33.

    Google Scholar 

  • Kurata N, Umehara Y, Tanoue H and Sasaki T 1997 Physical mapping of the rice genome with YAC clones. Plant Mol. Biol. 35, 101–113.

    PubMed  Google Scholar 

  • Landi P, Albrecht B, Giuliani M M and Sanguineti M C 1998 Seedling characteristics in hydroponic culture and field performance of maize genotypes with different resistance to root lodging. Maydica 43, 111–116.

    Google Scholar 

  • Landi P, Giuliani M M, Darrah L L, Tuberosa R, Conti S and Sanguineti M C 2001 Variability for root and shoot traits in a maize population grown in hydroponics and in the field and their relationships with vertical root pulling resistance. Maydica 46, 177–182.

    Google Scholar 

  • Landi P, Salvi S, Sanguineti M C, Stefanelli S and Tuberosa R. 2002 Development and preliminary evaluation of near-isogenic maize lines differing for a QTL which affects leaf ABA concentration. Maize Genet. Coop. Newslett. 76, 7–8.

    Google Scholar 

  • Lebreton C, Lazic-Jancic V, Steed A, Pekic S and Quarrie S A 1995 Identification of QTL for drought responses in maize and their use in testing causal relationships between traits. J. Exp. Bot. 46, 853–865.

    Google Scholar 

  • Lee M 1995 DNA markers and plant breeding programs. Adv. Agron. 55, 265–344.

    Google Scholar 

  • Legare M E, Bartlett F S and Frankel WN 2000 A major effect QTL determined by multiple genes in epileptic EL mice. Genome Res. 10, 42–48.

    PubMed  Google Scholar 

  • Lin Y R, Schertz K F and Paterson A 1995 Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. Genetics 141, 391–411.

    PubMed  Google Scholar 

  • Liu B H 1998 Statistical Genomics: Linkage, mapping and QTL analysis. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Ludlow M M and Muchow R C 1990 A critical evaluation of traits for improving crop yields in water-limited environments. Adv. Agron. 43, 107–153.

    Google Scholar 

  • Martinez O and Curnow R N 1992 Estimating the locations and the sizes of the effects of quantitative trait loci using flanking markers. Theor. Appl. Genet. 85, 480–488.

    Google Scholar 

  • Mather D E, Tinker N A, LaBerge D E, Edney M, Jones B L, Rossnagel B G, Legge W G, Briggs K G, Irvine R B, Falk D E and Kasha K J 1997 Regions of the genome that affect grain and malt quality in a North American two-row barley cross. Crop Sci. 37, 544–554.

    Google Scholar 

  • Matsumura H, Nirasawa S and Terauchi R 1999 Transcript profiling in rice (Oryza sativa L.) seedlings using serial analysis of gene expression (SAGE). Plant J. 20, 719–726.

    PubMed  Google Scholar 

  • Mauricio R 2001 Mapping quantitative trait loci in plants: uses and caveats for evolutionary biology. Nat. Genet. 2, 370–381.

    Google Scholar 

  • McCallum C M, Comai L, Greene E A and Henikoff S 2000 Targeting Induced Local Lesions IN Genomes (TILLING) for plant functional genomics. Plant Physiol. 123, 439–442.

    PubMed  Google Scholar 

  • McDonald A J S and Davies W J 1996 Keeping in touch: responses of the whole plant to deficits in water and nitrogen supply. Adv. Bot. Res. 22, 229–300.

    Google Scholar 

  • Meuwissen T H and Goddard M E 2000 Fine mapping of quantitative trait loci using linkage disequilibria with closely linked marker loci. Genetics 155, 421–430.

    PubMed  Google Scholar 

  • Melchinger A E, Geiger H H and Schnell F W 1986 Epistasis in maize (Zea mays L.). I. Comparison of single and three-way cross hybrids among early flint and dent inbred lines. Maydica 31, 179–192.

    Google Scholar 

  • Melchinger A E, Utz H F and Schon C C 1998 Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149, 383–403.

    PubMed  Google Scholar 

  • Musick G J, Fairchild M L, Fergason V L and Zuber M S 1965 A method of measuring root volume in corn (Zea mays L.). Crop Sci. 5, 601–602.

    Google Scholar 

  • Nagy Z, Tuba Z, Zsoldos F and Erdei L 1995 CO2-exchange and water relation responses of sorghum and maize during water and salt stress.J. Plant Physiol. 145, 539–544.

    Google Scholar 

  • Nass H G and Zuber M S 1971 Correlation of corn (Zea mays L.) roots early in development to mature root development. Crop Sci. 11, 655–658.

    Google Scholar 

  • Neuffer M G, Coe E H and Wessler S R 1997 Mutants of Maize. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Openshaw S and Frascaroli E 1997 QTL detection and marker-assisted selection for complex traits in maize. Proc. of the 52nd Annual Corn and Sorghum Research Conference American Seed Trade Association. Washington, DC, pp. 44–53.

  • O'Toole J C and Bland W L 1987 Genotypic variation in crop plant root systems. Adv. Agron. 41, 91–145.

    Google Scholar 

  • Ozturk Z N, Talamé V, Deyholos M, Michalowski C B, Galbraith D W, Gozukirmizi N, Tuberosa R and Bohnert H J 2002 Monitoring large-scale changes in transcript abundance in drought-and saltstressed barley. Plant. Mol. Biol. 48, 551–573.

    PubMed  Google Scholar 

  • Passioura J B 1996 Drought and drought tolerance. In Drought Tolerance in Higher Plants. Genetical, physiological and molecular biological analysis. Ed. E Belhassen. pp. 1–7. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Paterson A H, Damon S, Hewitt J K, Zamir D, Rabinowitch H D, Lincoln S E, Lander E S and Tanksley S D 1991Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics 127, 181–197.

    PubMed  Google Scholar 

  • Paterson A H, Lan T H, Reischmann K P, Chang C, Lin Y R, Liu S C, Burow M D, Kowalski S P, Katsar C S, Del Monte T A, Feldmann K A, Schertz K F and Wendel J F 1996 Towards a unified genetic map of higher plants, transcending the monocotdicot divergence. Nat. Genet. 14, 380–382.

    PubMed  Google Scholar 

  • Peng J, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D and Harberd N P 1999 'Green revolution' genes encode mutant gibberellin response modulators. Nature 400, 256–261.

    PubMed  Google Scholar 

  • Phillips R L, Kim T S, Kaeppler S M, Parentoni S N, Shaver D L, Stucker R I and Openshaw S J 1992 Genetic dissection of maturity using RFLPs. Proc. of the 47th Annual Corn and Sorghum Research Conference American Seed Trade Association, Washington, DC, pp. 135–150.

  • Price A H, Steele K A, Moore B J, Barraclough P B and Clark L J 2000 A combined RFLP and AFLP linkage map of upland rice (Oryza sativa L.) used to identify QTLs for root-penetration ability. Theor. Appl. Genet. 100, 49–56.

    Google Scholar 

  • Prioul J L, Quarrie S, Causse M and de Vienne D 1997 Dissecting complex physiological functions through the use of molecular quantitative genetics. J. Exp. Bot. 48, 1151–1163.

    Google Scholar 

  • Quarrie S A 1996 New molecular tools to improve the efficiency of breeding for increased drought resistance. Plant Growth Regul. 20, 167–178.

    Google Scholar 

  • Raamsdonk L M, Teusink B, Broadhurst D, Zhang N, Hayes A, Walsh M C, Berden J A, Brindle K M, Kell D B, Rowland J J, Westerhoff H V, van Dam K and Oliver S G 2001 A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat. Biotechnol. 19, 45–50.

    PubMed  Google Scholar 

  • Rafalski A 2002 Applications of single nucleotide polymorphisms in crop genetics.Curr. Opin. Plant Biol. 5, 94–100.

    PubMed  Google Scholar 

  • Ragot M, Gay G, Muller J P and Durovray J 2000 Efficient selection for adaptation to the environment through QTL mapping and manipulation in maize. In Molecular Approaches for the Genetic Improvement of Cereals for Stable Production in Waterlimited Environments. A Strategic Planning Workshop held at CIMMYT, El Batán, Mexico, 21–25 June 1999. Ed. J M Ribaut, D Poland. pp. 128–130.

  • Redoña D, Mackill D J 1996. Mapping quantitative trait loci for seedling vigor in rice using RFLPs. Theor. Appl. Genet. 92, 395–402.

    Google Scholar 

  • Ribaut J M and Hoisington D 1998 Marker-assisted selection: new tools and strategies. Trends Plant Sci. 31, 236–239.

    Google Scholar 

  • Ribaut J M, Hoisington D A, Deutsch J A, Jiang C and Gonzalez de Leon D 1996 Identification of quantitative trait loci under drought conditions in tropical maize. 1. Flowering parameters and the anthesis-silking interval. Theor. Appl. Genet. 92, 905–914.

    Google Scholar 

  • Ribaut J M, Gonzalez de Leon D, Jiang C, Edmeades G O and Hoisington D 1997 Identification and transfer of ASI quantitative trait loci (QTL): a strategy to improve drought tolerance in maize lines and populations. In Developing Drought-and Low N-tolerant Maize. Eds. G O Edmeades, M Bänziger, H R Mickelson and C B Peña-Valdivia. pp. 396–400. Proc. of a Symposium, 25–29 March 1996. CIMMYT, El Batán.

    Google Scholar 

  • Ribaut J M, Edmeades G, Perotti E and Hoisington D 2000 QTL analyses, MAS results, and perspectives for drought-tolerance improvement in tropical maize. In Molecular Approaches for the Genetic Improvement of Cereals for Stable Production in Waterlimited Environments. Eds. J M Ribaut and D Poland. Proc. of a Strategic Planning Workshop, 21–25 June 1999. pp. 131–136, CIMMYT, El Batán.

    Google Scholar 

  • Richards R A 1991 Crop improvement for temperate Australia: future opportunities. Field Crop Res. 26, 141–169.

    Google Scholar 

  • Robertson D S 1985 A possible technique for isolating genic DNA for quantitative traits in plants. J. Theor. Biol. 117, 1–10.

    Google Scholar 

  • Salvi S, Tuberosa R, Sanguineti M C, Landi P and Conti S 1997 Molecular marker analysis of maize populations divergently selected for abscisic acid concentration in the leaf. Maize Genet. Coop. Newslett. 71, 15–16.

    Google Scholar 

  • Salvi S, Tuberosa R, Phillips R L 2001 Development of PCRbased assays for allelic discrimination in maize by using the 5'-nuclease procedure. Mol. Breed. 8, 169–176.

    Google Scholar 

  • Salvi S, Tuberosa R, Chiapparino E, Maccaferri M, Veillet S, van Beuningen L, Isaac P, Edward K J and Phillips R L 2002 Toward positional cloning of Vgt1, a QTL controlling the transition from the vegetative to the reproductive phase in maize. Plant Mol. Biol. 48, 601–613.

    PubMed  Google Scholar 

  • Sanguineti M C, Giuliani M M, Govi G, Tuberosa R and Landi P 1998 Root and shoot traits of maize inbred lines grown in the field and in hydroponic culture and their relationships with root lodging. Maydica 43, 211–216.

    Google Scholar 

  • Sanguineti MC, Tuberosa R, Landi P, Salvi S, Maccaferri M, Casarini E and Conti S 1999 QTL analysis of drought-related traits and grain yield in relation to genetic variation for leaf abscisic acid concentration in field-grown maize. J. Exp. Bot. 50, 1289–1297.

    Google Scholar 

  • Sharp R E, Wu Y, Voetberg G S, Saab I N, LeNoble M E, Wang T L Davies W J and Pollock C J 1994 Confirmation that abscisic acid accumulation is required for maize primary root elongation at low water potentials. J. Exp. Bot. 45, 1743–1751.

    Google Scholar 

  • Schneider K, Borchardt D C, Schafer Pregl R, Nagl N, Glass C, Jeppsson A, Gebhardt C and Salamini F 1999 PCR-based cloning and segregation analysis of functional gene homologues in Beta vulgaris. Mol. Gen. Genet. 262, 515–524.

    PubMed  Google Scholar 

  • Smith S E and Hayman D S 1997 Mycorrhizal Symbiosis. 2nd ed. Academic Press, San Diego, CA.

    Google Scholar 

  • Somerville C and Somerville S 1999 Plant functional genomics. Science 285, 380–383.

    PubMed  Google Scholar 

  • Stamp P and Kiel C 1992 Seedling traits of maize as indicators of root lodging. Agronomie 12, 157–162.

    Google Scholar 

  • Stokes A, Ball J, Fitter A H, Brain P and Coutts M P 1996 An experimental investigation of the resistance of model root system to uprooting. Ann. Bot. 78, 415–421.

    Google Scholar 

  • Stuber C W, Edwards M D and Wendel J F 1987 Molecular markerfacilitated investigations of quantitative trait loci in maize. II. Factors influencing yield and its component traits. Crop Sci. 27, 639–648.

    Google Scholar 

  • Stuber C W, Polacco M and Senior M L 1999 Synergy of empirical breeding, marker-assisted selection, and genomics to increase crop yield potential. Crop Sci. 39, 1571–1583.

    Google Scholar 

  • Sullivan C Y 1983 Genetic variability in physiological mechanisms of drought resistance. Iowa State Journal of Research 57, 423–439.

    Google Scholar 

  • Takahashi Y, Shomura A, Sasaki T and Yano M 2001 Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, en54 codes the a subunit of protein kinase CK2. Proc. Natl. Acad. Sci. USA 98, 7922–7927.

    PubMed  Google Scholar 

  • Tanksley S D 1993 Mapping polygenes. Annu. Rev. Genet. 27, 205–233.

    PubMed  Google Scholar 

  • Tanksley S D, Nelson J C 1996 Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor. Appl. Genet. 92, 191–203.

    Google Scholar 

  • Tanksley S D, Ganal MW and Martin G B 1995 Chromosome landing: a paradigm for map-based gene cloning in plants with large genome. Trends Genet. 11, 63–68.

    PubMed  Google Scholar 

  • Tanksley S D, Grandillo S, Fulton T M, Zamir D, Eshed Y, Petiard V, Lopez J and Beck-Bunn T 1996 Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor. Appl. Genet. 92, 213–224.

    Google Scholar 

  • The Arabidopsis Genome Initiative 2000 Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815.

    Google Scholar 

  • Thiellement H, Bahrman N, Damerval C, Plomion C, Rossignol M, Santoni V, de Vienne D, Zivy M1999 Proteomics for genetic and physiological studies in plants. Electrophoresis 20, 2013–2026.

    PubMed  Google Scholar 

  • Thompson D L 1968 Field evaluation of corn root clumps. Agron. J. 60, 170–172.

    Google Scholar 

  • Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D and Buckler E S 2001 Dwarf8 polymorphisms associate with variation in flowering time. Nat. Genet. 28, 286–289.

    PubMed  Google Scholar 

  • Touzet P, Winkler R G and Helentjaris T 1995 Combined genetic and physiological analysis of a locus contributing to quantitative variation. Theor. Appl. Genet. 91, 200–205.

    Google Scholar 

  • Tuberosa R, Parentoni S, Kim T S, Sanguineti M C, Phillips R L 1998a Mapping QTLs for ABA concentration in leaves of a maize cross segregating for anthesis date. Maize Genet. Coop. Newslett. 72, 72–73.

    Google Scholar 

  • Tuberosa R, Sanguineti M C, Landi P, Salvi S, Casarini E and Conti S 1998b RFLP mapping of quantitative trait loci controlling abscisic acid concentration in leaves of drought-stressed maize (Zea mays L.). Theor. Appl. Genet. 97, 744–755.

    Google Scholar 

  • Tuberosa R, Sanguineti M C, Ribaut J M, Landi P, Giuliani M M, Salvi S and Conti S 2000 QTL analysis of root characteristics in maize grown in hydroponics as related to field performance under drought conditions. Abstracts of the 'Plant & Animal Genome VIII' Conference, 9–12 January, San Diego, CA, pp. 5.

  • Tuberosa R, Gill B S and Quarrie S 2002a. Cereal genomics: ushering in a brave new world. Plant Mol. Biol. 48, 445–449.

    PubMed  Google Scholar 

  • Tuberosa R, Sanguineti M C, Landi P, Giuliani M M, Salvi S and Conti S 2002b Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. Plant Mol. Biol. 48, 697–712.

    PubMed  Google Scholar 

  • Utz H F and Melchinger A E 1996 PLABQTL. A program for composite interval mapping of QTL. J. Quant. Trait Loci. http://probe.nalusda.gov:800/otherdocs /jqtl.

  • van Buuren M, Salvi S, Morgante M, Serhani B and Tuberosa R 2002 Comparative genomic mapping between a 754 kb region flanking DREB1A in Arabidopsis thaliana and maize. Plant Mol. Biol. 48, 741–750.

    PubMed  Google Scholar 

  • Veen BW1977 The uptake of potassium, nitrate, water, and oxygen by a maize root system in relation to its size. J. Exp. Bot. 28, 1389–1398.

    Google Scholar 

  • Velculescu V E, Zhang L, Vogelstein B and Kinzler KW1995 Serial analysis of gene expression. Science 20, 484–487.

    Google Scholar 

  • Vienne de D, Leonardi A, Damerval C and Zivy M 1999 Genetics of proteome variation for QTL characterization: application to drought-stress responses in maize. J. Exp. Bot. 50, 303–309.

    Google Scholar 

  • Vladutu C, McLaughlin J and Phillips R L 1999 Fine mapping and characterization of linked quantitative trait loci involved in the transition of maize apical meristem from vegetative to generative structures. Genetics 153, 993–1007.

    PubMed  Google Scholar 

  • Wang D L, Zhu J, Li Z K and Paterson A H 1999 Mapping QTLs with epistatic effects and QTL x environment interactions by mixed linear model approaches. Theor. Appl. Genet. 99, 1255–1264.

    Google Scholar 

  • Wen T J and Schnable P S 1994 Analyses of mutants of three genes that influence root hair development in Zea mays (Gramineae) suggest that root hairs are dispensable. Am. J. Bot. 81, 833–842.

    Google Scholar 

  • Weerathaworn P, Soldati A and Stamp P 1992 Anatomy of seedling roots of tropical maize (Zea mays L.) cultivars at low water supply. J. Exp. Bot. 43, 1015–1021.

    Google Scholar 

  • Wicking C and Williamson B 1991 From linked marker to gene. Trends Genet. 7, 288–293.

    PubMed  Google Scholar 

  • Wilson H K 1930 Plant characters as indices in relation to the ability of corn strains to withstand lodging. J. Am. Soc. Agron. 22, 453–458.

    Google Scholar 

  • Wilson W A, Harrington S E, Woodman W L, Lee M, Sorrells M E and McCouch S R 1999 Inferences on the genome structure of progenitor maize through comparative analysis of rice, maize and the domesticated panicoids. Genetics 153, 453–473.

    PubMed  Google Scholar 

  • Winkler R and Helentjaris T 1995 The maize dwarf3 gene encodes a cytochrome P450-mediated early step in gibberellin biosynthesis. Plant Cell 7, 1307–1317.

    PubMed  Google Scholar 

  • Witcombe J R and Hash C T 2000 Resistance gene deployment strategies in cereal hybrids using marker-assisted selection: gene pyramiding, three-way hybrids, and synthetic parent populations. Euphytica 112, 175–186.

    Google Scholar 

  • Xiao J, Li J, Grandillo S, Ahn S N, Yuan L, Tanksley S D and McCouch S R 1998 Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics 150, 899–909.

    PubMed  Google Scholar 

  • Yadav R, Courtois B, Huang N and McLaren G 1997 Mapping genes controlling root morphology and root distribution in a doubledhaploid population of rice. Theor. Appl. Genet. 94, 619–632.

    Google Scholar 

  • Yamamoto T, Kuboki Y, Lin S Y, Sasaki T and Yano M 1998 Fine mapping of quantitative trait loci Hd-1, Hd-2, and Hd-3, controlling heading date of rice, as single Mendelian factors. Theor. Appl. Genet. 97, 37–44.

    Google Scholar 

  • Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y and Sasaki T 2000 Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12, 2473–2484.

    PubMed  Google Scholar 

  • Yi N and Xu S 2002 Mapping quantitative trait loci with epistatic effects. Genet Res 79, 185–198.

    PubMed  Google Scholar 

  • Young N D 1999 A cautiously optimistic vision for marker-assisted breeding. Mol. Breed. 5, 505–510.

    Google Scholar 

  • Zeng Z B 1994 Precision mapping of quantitative trait loci. Genetics 136, 1457–1468.

    Google Scholar 

  • Zinselmeier C, Sun Y, Helentjaris T, Beatty M, Yang S, Smith H and Habben J 2002 The use of gene expression profiling to dissect the stress sensitivity of reproductive development in maize. Field Crop Res. 75, 111–121.

    Google Scholar 

  • Zivy M and de Vienne D 2000 Proteomics: a link between genomics, genetics and physiology. Plant Mol. Biol. 44, 575–580.

    PubMed  Google Scholar 

  • Zuber M S 1968 Evaluation of corn root systems under various environments. Proc. Annu. Corn Sorghum Ind. Res. Conf. 23, 67–75.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Tuberosa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuberosa, R., Salvi, S., Sanguineti, M.C. et al. Searching for quantitative trait loci controlling root traits in maize: a critical appraisal. Plant and Soil 255, 35–54 (2003). https://doi.org/10.1023/A:1026146615248

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026146615248

Navigation