Skip to main content
Log in

Computational Modeling of Active Sites in Heterogeneous Catalysts

  • Published:
CATTECH

Abstract

Industrial catalysts often owe their remarkable activity, selectivity and reliability to many years of gradual improvement and optimization. Such research largely relies on physically/chemically motivated systematic variations of important parameters such as catalyst composition and working conditions, but often there is only moderate emphasis placed on the elucidation of the fundamental reasons for a catalyst's success. This “trial-and-error” approach is chosen not because of any strong reluctance to discover a catalyst's intrinsic workings but, rather, because modern catalysts are extremely complicated systems, making fundamental investigations expensive in time and money and with no guarantee of useful results. One reason for this is that, from the theoretical analysis point of view regarding such complex systems, it can appear almost impossible to distinguish the catalytically important and active aspects from the redundant and passive. The assumption that this division of role can be made, however, lies at the root of most intuitive ideas relating to catalytic activity. In this article, we aim to illustrate that by combining computational approaches with this conceptual division of role much benefit can be derived. Such considerations are based around the general concept of localized active sites, as distinguished from the supporting liquid or solid environments of the catalyst, which are assumed to be relatively inert but not without influence. We will show how this concept can be used as the starting point of modern computational modeling techniques, which can be applied at a number of different levels to heterogeneous catalytic systems, pointing the way to a more efficient approach to catalyst optimization and understanding than trial-and-error. Our account will culminate in one of the most computationally extensive descriptions of an active site yet achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Zhu and A. E. De Pristo, J. Catal., 167 (1997) 400.

    Google Scholar 

  2. R. Adams, J. Organomet. Chem., 600 (2000) 1.

    Google Scholar 

  3. D. S. Mainardi and P. B. Balbuena, Langmuir, 17 (2001) 2047.

    Google Scholar 

  4. G. Sastre, C. Richard A. Catlow, A. Chica and A. Corma, J. Phys. Chem. B, 104 (2000) 416.

    Google Scholar 

  5. Th. L. M. Maesen, M. Shenk, T. J. Vlugt and B. Smit, J. Catal., 203 (2001) 281.

    Google Scholar 

  6. A. K. Rappé, C. J. Casewit, K. S. Colwell, W. A. Goddard III and W. M. Skiff, J. Am. Chem. Soc., 114 (1992) 10024.

    Google Scholar 

  7. M. I. Baskes, Phys. Rev. B, 46 (1992) 2727.

    Google Scholar 

  8. P. van Beurden, H. G. J. Verhoeven, G. J. Kramer and B. J. Thijsse, Phys. Rev. B, 66 (2002) 235409.

    Google Scholar 

  9. V. J. Burton, R. J. Deeth, C. M. Kemp and P. J. Gilbert, J. Am. Chem. Soc., 117 (1995) 8407.

    Google Scholar 

  10. S. M. Woodley, P. D. Battle, C. R. A. Catlow and J. D. Gale, J. Phys. Chem. B, 105 (2001) 6824.

    Google Scholar 

  11. A. K. Rappé and W. A. Goddard III, J. Phys. Chem., 95 (1991) 3358.

    Google Scholar 

  12. W. J. Mortier, S. K. Ghosh and S. J. Shankar, J. Am. Chem. Soc., 108 (1986) 4315.

    Google Scholar 

  13. A. C. T. van Duin, A. Strachan, S. Stewman, Q. Zhang, X. Xu and W. A. Goddard III, J. Phys. Chem. A, 107 (2003) 3803.

    Google Scholar 

  14. K. S. Smirnov, J. Phys. Chem. B, 105 (2001) 7405.

    Google Scholar 

  15. Y. Shinohara, T. Nakajima and S. Suzuki, THEOCHEM, 460 (1999) 231.

    Google Scholar 

  16. S. Gonzalez, C. Sousa, M. Fernandez-Garcia, V. Bertin and F. Illas, J. Phys. Chem. B, 106 (2002) 7839.

    Google Scholar 

  17. I.V. Yudanov, R. Sahnoun, K. M. Neyman and N. Rösch, J. Chem. Phys. 117 (2002) 9887.

    Google Scholar 

  18. M. Anstrom, N-Y. Topsoe and J. A. Dumesic, J. Catal., 213 (2003) 115.

    Google Scholar 

  19. [17a]M. V. Frashand R. A. van Santen, Topics Catal. 9 (1999) 191.

    Google Scholar 

  20. S. T. Bromley, G. Sankar, T. Maschmeyer, B. Johnson, J. M. Thomas and C. R. A. Catlow, Chem. Phys. Lett., 340 (2001) 524; S. T. Bromley, G. Sankar, T. Maschmeyer, J. M. Thomas and C. R. A Catlow, Micro. Meso. Mat., 44-45 (2001) 395; C. R. A. Catlow, S. A. French, A. A. Sokol, M. Alfredsson and S. T. Bromley, Faraday Discuss., 124 (2003) 185-203.

    Google Scholar 

  21. G. N. Vayssilov, B. C. Gates and N. Rósch, Angew. Chem. Int. Ed., 42 (2003) 1391; J. Goellner, K. M. Neyman, M. Mayer, F. Nörtemann, B. C. Gates and Notker Rösch, Langmuir, 16 (2000) 2736.

    Google Scholar 

  22. N. López, F. Illas and G. Pacchioni, J. Phys. Chem. B, 103 (1999) 8552.

    Google Scholar 

  23. X. Rozanska, R. A. van Santen, F. Hutschka and J. Hafner, J. Catal., 205 (2002) 388.

    Google Scholar 

  24. A. A. Sokol, C. R. A. Catlow, J. M. Garces and A. Kuperman, Adv. Mater., 12 (2000) 1801.

    Google Scholar 

  25. J. Greeley, J. Norskov and M. Mavrikakis, Annu. Rev. Phys. Chem., 53 (2002) 319.

    Google Scholar 

  26. Z-P. Lui and P. Hu, J. Am. Chem. Soc., 125 (2003) 1958.

    Google Scholar 

  27. M. Alfredsson, C. R. A. Catlow, Phys. Chem. Chem. Phys., 4 (2002) 6100.

    Google Scholar 

  28. Q. Ma, K. Klier, H. Cheng and J. W. Mitchell, J. Phys. Chem. B, 106 (2002) 10121.

    Google Scholar 

  29. A. Travert, H. Nakamura, R. A. van Santen, S. Cristol, J-F. Paul and E. Payen, J. Amer. Chem. Soc., 124 (2002) 7084.

    Google Scholar 

  30. D. Bakowies and W. Thiel, J. Phys. Chem., 100 (1996) 10580-94.

    Google Scholar 

  31. I. Komaromi, S. Dapprich, K. S. Byun, K. Morokuma and M. J. Frisch, J. Mol. Struct.: THEOCHEM, 461 (1999) 1.

    Google Scholar 

  32. I. Morao, J. P. McNamara and I. H. Hillier, J. Am. Chem. Soc., 125 (2003) 628.

    Google Scholar 

  33. M. Sierka and J. Sauer, J. Chem. Phys., 112 (2000) 6983.

    Google Scholar 

  34. M. E. Franke, M. Sierka, U. Simon and J. Sauer, Phys. Chem. Chem. Phys., 4 (2002) 5207.

    Google Scholar 

  35. D. Bakowies and W. J. Thiel, J. Phys. Chem., 100 (1996) 10580.

    Google Scholar 

  36. A. de Vries, P. Sherwood, S. J. Collins, A. M. Rigby, M. Rigutto and G. J. Kramer, J. Phys. Chem. B, 107 (2003) 7045; 103 (1999) 6133.

    Google Scholar 

  37. S. P. Greatbanks, I. H. Hillier, N. A. Burton and P. Sherwood, J. Chem. Phys., 105 (1996) 3770.

    Google Scholar 

  38. N. Lopez, G. Pacchioni, G. Maseras and F. Illas, Chem. Phys. Lett., 294 (1999) 611.

    Google Scholar 

  39. J. M. Vollmer, T. Truong J. Phys. Chem. B 104 (2000) 6308; J. M. Vollmer, E. V. Stefanovich and T. Truong, J. Phys. Chem. B, 103 (1999) 9415.

    Google Scholar 

  40. S. T. Bromley, S. A. French, A. A. Sokol, C. R. A. Catlow and P. Sherwood, J. Phys. Chem B 107 (2003) 7045; S. A. French, A. A. Sokol, S. T. Bromley, C. R. A. Catlow, S. Rogers, F. King and P. Sherwood, Angew. Chem., 113 (2001) 4569.

    Google Scholar 

  41. V. A. Nasluzov, E. A. Ivanova, A. M. Shor, G. N. Vayssilov, U. Birkenheuer and N. Rösch, J. Phys. Chem. B, 107 (2003) 2228; V. V. Rivanenkov, V. A. Nasluzov, A. M. Shor, K. M. Neyman and N. Rösch, Surf. Sci., 525 (2003) 173.

    Google Scholar 

  42. P. V. Sushko, A. L. Shluger and C. R. A. Catlow, Surf. Sci., 450 (2000) 153.

    Google Scholar 

  43. G. Paccioni, A. M. Ferrari, A. M. Márquez and F. Illas, J. Comp. Chem., 18 (1997) 617.

    Google Scholar 

  44. K. M. Neyman, S. Vent, N. Rösch and G. Pacchioni, Topics Catal. 9 (1999) 153.

    Google Scholar 

  45. N. López and F. Illas, J. Mol. Catal. A: Chem., 119 (1997) 177.

    Google Scholar 

  46. W. F. Schneider, K. C. Hass, M. Miletic and J. L. Gland, J. Phys. Chem., 106 (2002) 7405.

    Google Scholar 

  47. J. Pacchioni, J. Lomas and F. Illas, J. Mol. Catal. A: Chem. 119 (1997) 263.

    Google Scholar 

  48. C. Pisani, R. Dovesi, C. Roetti, M. Causá, R. Orlando, S. Casassa and V. R. Saunders, Int. J. Quantum Chem., 77 (2000) 1032-1048.

    Google Scholar 

  49. B. G. Dick and A. W. Overhauser, Phys. Rev., 112 (1958) 90.

    Google Scholar 

  50. P. Sherwood, A. H. de Vries, M. F. Guest, G. Schreckenbach, C. R. A. Catlow, S. A. French, A. A. Sokol, S. T. Bromley, W. Thiel, A. J. Turner, S. Billeter, F. Terstegen, S. Thiel, J. Kendrick, S. C. Rogers, J. Casci, M. Watson, F. King, E. Karlsen, M. Sjøvoll, A. Fahmi, A. Schäfer and C. Lennartz, J. Mol. Struct., Theochem (in press) 2003).

  51. P. Sherwood and A. H. de Vries, ChemShell User Manual, available online at http://www.cse.clrc.ac.uk/qcg/chemshell, 1997-2003.

  52. C. Lennartz, A. Schäfer, F. Terstegen and W. Thiel, J. Phys. Chem. B, 106 (2002) 1758.

    Google Scholar 

  53. M. Bühl, F. Terstegen, F. Lóffler, B. Meynhardt, S. Kierse, M. Müller, C. Näther and U. Lüning, Eur. J. Org. Chem., (2001) 2151-60.

  54. G. C. Chinchen, M. S. Spencer, K. C. Waugh and D. A. Whan, J. Chem. Soc. Faraday Trans., 1 (1987) 2193.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.T. Bromley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bromley, S., Catlow, C. & Maschmeyer, T. Computational Modeling of Active Sites in Heterogeneous Catalysts. CATTECH 7, 164–175 (2003). https://doi.org/10.1023/A:1026073131886

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026073131886

Keywords

Navigation