Skip to main content
Log in

Antioxidant properties of myocardial fuels

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Oxidative metabolism of blood-borne fuels provides myocardium the energy required to sustain its contractile performance. Recent research has revealed that, in addition to supplying energy, certain fuels are able to detoxify harmful oxidants and bolster the myocardium's endogenous antioxidant defenses. These antioxidant capabilities could potentially protect the myocardium from the ravages of reactive oxygen and nitrogen intermediates generated upon reperfusion of ischemic myocardium. This article reviews experimental evidence that two fuels, pyruvate and acetoacetate, provide such antioxidant protection. Pyruvate's antioxidant properties stem in part from its α-keto carboxylate structure, which enables it to directly, non-enzymatically neutralize peroxides and peroxynitrite. Also, citrate, which accumulates in pyruvate-perfused myocardium following anaplerotic pyruvate carboxylation, supports NADPH production to maintain glutathione:glutathione disulfide (GSH/GSSG) redox potential, the central component of the myocardial antioxidant system. Like pyruvate, acetoacetate restores GSH/GSSG and increases contractile function of post-ischemic stunned myocardium, although some of its antioxidant mechanisms may differ from pyruvate's. Both compounds restore β-adrenergic signaling and inotropism, which are compromised in stunned myocardium. N-acetylcysteine, a pharmacological antioxidant that does not provide energy, duplicated the salutary effects of pyruvate and acetoacetate on post-ischemic β-adrenergic signaling and GSH/GSSG. These findings reveal novel, energy-independent mechanisms for enhancement of post-ischemic cardiac performance by metabolic fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberola A, Such L, Gil F, Zaragoza EJ, Morcillo EJ: Protective effect of N-acetylcysteine on ischaemia-induced myocardial damage in canine heart. Naunyn-Schmiedeberg's Arch Pharmacol 343: 505-510, 1991

    Google Scholar 

  2. Tang L-D, Sun J-Z, Wu K, Sun C-P, Tang Z-M: Beneficial effects of N-acetyleysteine and cysteine in stunned myocardium in perfused rat heart. Br J Pharmacol 102: 601-606, 1991

    Google Scholar 

  3. Bolli R, Marbán E: Molecular and cellular mechanisms of myocardial stunning. Physiol Rev 79: 609-634, 1999

    Google Scholar 

  4. Kuo W-N, Kreahling JM, Shanbhag VP, Shanbhag PP, Mewar M: Protein nitration. Mol Cell Biochem 214: 121-129, 2000

    Google Scholar 

  5. Dhalla NS, Elmoselhi AB, Hata T, Makino N: Status of myocardial antioxidants in ischemia-reperfusion injury. Cardiovasc Res 47: 446-456, 2000

    Google Scholar 

  6. Schafer FQ, Buettner GR: Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30: 1191-1212, 2001

    Google Scholar 

  7. Kukreja RC, Hess ML: The oxygen free radical system: From equations through membrane-protein interactions to cardiovascular injury and protection. Cardiovasc Res 26: 641-655, 1992

    Google Scholar 

  8. Charlat ML, O'Neill PG, Egan JM, Abernethy DR, Michael LH, Myers ML, Roberts R, Bolli R: Evidence for a pathogenetic role of xanthine oxidase in the 'stunned' myocardium. Am J Physiol Heart Circ Physiol 252: H566-H577, 1987

    Google Scholar 

  9. Yu BP: Cellular defenses against damage from reactive oxygen species. Physiol Rev 74: 139-162, 1994

    Google Scholar 

  10. Beckman JS, Koppenol WH: Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and the ugly. Am J Physiol Cell Physiol 271: C1424-C1437, 1996

    Google Scholar 

  11. Savvides SN, Scheiwein M, Böhme CC, Arteel GE, Karplus PA, Becker K, Schirmer RH: Crystal structure of the antioxidant enzyme glutathione reductase inactivated by peroxynitrite. J Biol Chem 277: 2779-2784, 2002

    Google Scholar 

  12. Radi R, Beckman JS, Bush KM, Freeman BA: Peroxynitrite-induced membrane lipid peroxidation: The cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 288: 481-487, 1991

    Google Scholar 

  13. Cheung P-Y, Wang W, Schulz R: Glutathione protects against myocardial ischemia-reperfusion injury by detoxifying peroxynitrite. J Mol Cell Cardiol 32: 1669-1678, 2000

    Google Scholar 

  14. Heales SJR, Bolaños JP: Impairment of brain mitochondrial function by reactive nitrogen species: The role of glutathione in dictating susceptibility. Neurochem Int 40: 469-474, 2002

    Google Scholar 

  15. Yasmin W, Strynadka KD, Schulz R: Generation of peroxynitrite contributes to ischemia-reperfusion injury in isolated rat hearts. Cardiovasc Res 33: 422-432, 1997

    Google Scholar 

  16. Bolli R: Postischemic myocardial 'stunning': Pathogenesis, pathophysiology, and clinical relevance. In: D.M. Yellon, R.B. Jennings (eds). Myocardial Protection: The Pathophysiology of Reperfusion and Reperfusion Injury. Raven Press, New York, 1992, pp 105-149

    Google Scholar 

  17. Bolli R, Jeroudi MO, Patel BS, Aruoma OI, Halliwell B, Lai EK, McCay PB: Marked reduction of free radical generation and contractile dysfunction by antioxidant therapy begun at the time of reperfusion. Circ Res 65: 607-622, 1989

    Google Scholar 

  18. Weisel RD, Mickle DAG, Finkle CD, Tumiati LC, Madonik MM, Ivanov J, Burton GW, Ingold KU: Myocardial free-radical injury after cardioplegia. Circulation 80(suppl III): III14-III18, 1989

    Google Scholar 

  19. Janero DR, Hreniuk D, Sharif HM: Hydrogen peroxide-induced oxidative stress to the mammalian heart-muscle cell (cardiomyocyte): Lethal peroxidative membrane injury. J Cell Physiol 149: 347-364, 1991

    Google Scholar 

  20. Bagchi M, Prasad MR, Engleman RM, Das DK: Effects of free radicals on the fluidity of myocardial membranes. Free Radic Res Commun 7: 375-380, 1989

    Google Scholar 

  21. Lebedev AV, Levitsky DO, Loginov VA, Smirnov VN: The effect of primary products of lipid peroxidation on the transmembrane transport of calcium ions. J Mol Cell Cardiol 14(suppl 3): 99-103, 1982

    Google Scholar 

  22. Eaton P, Hearse DJ, Shattock MJ: Lipid hydroperoxide modification of proteins during myocardial ischemia. Cardiovasc Res 51: 294-303, 2001

    Google Scholar 

  23. Chatham JC, Gilbert HF, Radda GK: The metabolic consequences of hydroperoxide perfusion on the isolated rat heart. Eur J Biochem 184: 657-662, 1989

    Google Scholar 

  24. Janero DR, Hreniuk D, Sharif HM: Hydroperoxide-induced oxidative stress impairs heart muscle cell carbohydrate metabolism. Am J Physiol Cell Physiol 266: C179-C188, 1994

    Google Scholar 

  25. Vlessis AA, Muller P, Bartos D, Trunkey D: Mechanism of peroxide-induced cellular injury in cultured adult cardiac myocytes. FASEB J 5: 2600-2605, 1991

    Google Scholar 

  26. Radi R, Rodriguez M, Castro L, Telleri R: Inhibition of mitochondrial electron transport by peroxynitrite. Arch Biochem Biophys 308: 89-95, 1994

    Google Scholar 

  27. Tretter L, Adam-Vizi V: Inhibition of Krebs cycle enzymes by hydrogen peroxide: A key role of α-ketoglutarate dehydrogenase in limiting NADH production under oxidative stress. J Neurosci 20: 8972-8979, 2000

    Google Scholar 

  28. Tatsumi T, Kako KJ: Effects of hydrogen peroxide on mitochondrial enzyme function studied in situ in rat heart myocytes. Basic Res Cardiol 88: 199-211, 1993

    Google Scholar 

  29. Goldhaber JI, Qayyum MS: Oxygen free radicals and excitation-contraction coupling. Antioxid Redox Signal 2: 55-64, 2000

    Google Scholar 

  30. Kukreja RC, Weaver AB, Hess ML: Sarcolemmal Na+,K+-ATPase: Inactivation by neutrophil-derived free radicals and oxidants. Am J Physiol Heart Circ Physiol 259: H1330-H1336, 1990

    Google Scholar 

  31. Shao Q, Matsubara T, Bhatt SK, Dhalla NS: Inhibition of cardiac sarcolemma Na+-K+ ATPase by oxyradical generating systems. Mol Cell Biochem 147: 139-144, 1995

    Google Scholar 

  32. Josephson RA, Silverman HS, Lakatta EG, Stern MD, Zweier JL: Study of the mechanisms of hydrogen peroxide and hydroxyl free radical-induced cellular injury and calcium overload in cardiac myocytes. J Biol Chem 266: 2354-2361, 1991

    Google Scholar 

  33. Molina H, Garcia M: Enzymatic defenses of the rat heart against lipid peroxidation. Mech Ageing Dev 97: 1-7, 1997

    Google Scholar 

  34. Jung CH, Thomas JA: S-glutathiolated hepatocyte proteins and insulin disulfides as substrates for reduction by glutaredoxin, thioredoxin, protein disulfide isomerase, and glutathione. Arch Biochem Biophys 335: 61-72, 1996

    Google Scholar 

  35. Freislaben H-J, Packer L: Free-radical scavenging activities, interactions and recycling of antioxidants. Biochem Soc Trans 21: 325-330, 1993

    Google Scholar 

  36. Kehrer JP, Lund LG: Cellular reducing equivalents and oxidative stress. Free Radic Biol Med 17: 65-75, 1994

    Google Scholar 

  37. Mallet RT: Pyruvate: Metabolic protector of cardiac performance. Proc Soc Exp Biol Med 223: 136-148, 2000

    Google Scholar 

  38. Mallet RT, Bünger R: Energetic modulation of cardiac inotropism and sarcoplasmic reticular Ca2+ uptake. Biochim Biophys Acta 1224: 22-32, 1994

    Google Scholar 

  39. Mallet RT, Sun J: Mitochondrial metabolism of pyruvate is required for its enhancement of cardiac function and energetics. Cardiovasc Res 42: 149-161, 1999

    Google Scholar 

  40. Martin BJ, Valdivia HH, Bünger R, Lasley RD, Mentzer RM Jr: Pyruvate augments calcium transients in rat ventricular myocytes. Am J Physiol Heart Circ Physiol 274: H8-H17, 1998

    Google Scholar 

  41. Chen W, London R, Murphy E, Steenbergen C: Regulation of the Ca2+ gradient across the sarcoplasmic reticulum in perfused rat heart: A 19F nuclear magnetic resonance study. Circ Res 83: 898-907, 1998

    Google Scholar 

  42. Zhou Z, Lasley RD, Hegge JO, Bünger R, Mentzer RM Jr: Myocardial stunning: A therapeutic conundrum. J Thorac Cardiovasc Surg 110: 1391-1401, 1995

    Google Scholar 

  43. Zhang J, Toher C, Erhard M, Zhang Y, Ugurbil K, Bache RJ, Lange T, Homans DC: Relationships between myocardial bioenergetic and left ventricular function in hearts with volume-overload hypertrophy. Circulation 96: 334-343, 1997

    Google Scholar 

  44. Tejero-Taldo MI, Sun J, Caffrey JL, Mallet RT: Pyruvate potentiates β-adrenergic inotropism of stunned guinea-pig myocardium. J Mol Cell Cardiol 30: 2327-2339, 1998

    Google Scholar 

  45. Kiuchi K, Shen YT, Vatner SF, Vatner DE: Mechanisms mediating responsiveness to beta-adrenergic stimulation after coronary reperfusion in conscious dogs. Am J Physiol Heart Circ Physiol 267: H1578-H1588, 1994

    Google Scholar 

  46. Persad S, Takeda S, Panagia V, Dhalla NS: β-adrenoceptor-linked signal transduction in ischemic-reperfused heart and scavenging of oxyradicals. J Mol Cell Cardiol 29: 545-558, 1997

    Google Scholar 

  47. Persad S, Rupp H, Jindal R, Arneja J, Dhalla NS: Modification of cardiac β-adrenoceptor mechanisms by H2O2. Am J Physiol Heart Circ Physiol 274: H416-H423, 1998

    Google Scholar 

  48. Tejero-Taldo MI, Caffrey JL, Sun J, Mallet RT: Antioxidant properties of pyruvate mediate its potentiation of β-adrenergic inotropism in stunned myocardium. J Mol Cell Cardiol 31: 1863-1872, 1999

    Google Scholar 

  49. Constantopoulos G, Barranger JA: Nonenzymatic decarboxylation of pyruvate. Anal Biochem 139: 353-358, 1984

    Google Scholar 

  50. Vásquez-Vivar J, Denicola A, Radi R, Augusto O: Peroxynitrite-mediated decarboxylation of pyruvate to both carbon dioxide and carbon dioxide radical anion. Chem Res Toxicol 10: 786-794, 1997

    Google Scholar 

  51. Comte B, Vincent G, Bouchard B, Jetté M, Cordeau S, Des Rosiers C: A 13C mass isotopomer study of anaplerotic pyruvate carboxylation in perfused rat hearts. J Biol Chem 272: 26125-26131, 1997

    Google Scholar 

  52. Peuhkurinen KJ, Hassinen IE: Pyruvate carboxylation as an anaplerotic mechanism in the isolated perfused rat heart. Biochem J 202: 67-76, 1982

    Google Scholar 

  53. Russell RR III, Taegtmeyer H: Pyruvate carboxylation prevents the decline in contractile function of rat hearts oxidizing acetoacetate. Am J Physiol Heart Circ Physiol 261: H1756-H1762, 1991

    Google Scholar 

  54. Garland PB, Randle PJ, Newsholme EA: Citrate as an intermediary in the inhibition of phosphofructokinase in rat heart muscle by fatty acids, ketone bodies, pyruvate, diabetes and starvation. Nature 200: 169-170, 1963

    Google Scholar 

  55. Hermann HP, Zeitz O, Keweloh B, Hasenfuss G, Janssen PM: Pyruvate potentiates inotropic effects of isoproterenol and Ca2+ in rabbit cardiac muscle preparations. Am J Physiol Heart Circ Physiol 279: H702-H708, 2000

    Google Scholar 

  56. Hermann HP, Zeitz O, Lehnart SE, Keweloh B, Datz N, Hasenfuss G, Janssen PM: Potentiation of beta-adrenergic inotropic response by pyruvate in failing human myocardium. Cardiovasc Res 53: 116-123, 2002

    Google Scholar 

  57. Sun J, Squires J, Mallet RT: Acetoacetate restores contractile performance and antioxidant potential of H2O2-injured myocardium. J Mol Cell Cardiol 33: A115, 2001

    Google Scholar 

  58. Squires JE, Sun J, Caffrey JL, Yoshishige D, Mallet RT: Acetoacetate augments β-adrenergic inotropism of stunned myocardium by an antioxidant mechanism. Am J Physiol Heart Circ Physiol 284: H1340-H1347, 2003

    Google Scholar 

  59. Goodwin GW, Ahmad F, Doenst T, Taegtmeyer H: Energy provision from glycogen, glucose, and fatty acids on adrenergic stimulation of isolated working rat hearts. Am J Physiol Heart Circ Physiol 274: H1239-H1247, 1998

    Google Scholar 

  60. Uppu RM, Pryor WA: Carbon dioxide catalysis of the reaction of peroxynitrite with ethyl acetoacetate: An example of aliphatic nitration with peroxynitrite. Biochem Biophys Res Commun 229: 764-769, 1996

    Google Scholar 

  61. Menahan LA, Hron WT: Regulation of acetoacetyl-CoA in isolated perfused rat hearts. Eur J Biochem 119: 295-299, 1981

    Google Scholar 

  62. Hashimoto F, Hayashi H: Significance of catalase in peroxisomal fatty acyl-CoA β-oxidation: NADH oxidation by acetoacetyl-CoA and H2O2. J Biochem 108: 426-431, 1990

    Google Scholar 

  63. Mallet RT, Hartman DA, Bünger R: Glucose requirement for post-ischemic recovery of perfused working heart. Eur J Biochem 188: 481-493, 1990

    Google Scholar 

  64. Taegtmeyer H: On the inability of ketone bodies to serve as the only energy providing substrate for rat heart at physiological work load. Basic Res Cardiol 78: 435-450, 1983

    Google Scholar 

  65. Humphries KM, Juliano C, Taylor SS: Regulation of cAMP-dependent protein kinase activity by glutathionylation. J Biol Chem 277: 43505-43511, 2002

    Google Scholar 

  66. Hermann H-P, Pieske B, Schwarzmüller E, Keul J, Just H, Hasenfuss G: Haemodynamic effects of intracoronary pyruvate in patients with congestive heart failure: An open study. Lancet 353: 1321-1323, 1999

    Google Scholar 

  67. Olivencia-Yurvati AH, Blair JL, Baig M, Mallet RT: Pyruvate-enhanced cardioprotection during cardiopulmonary bypass surgery. J Cardiothorac Vasc Anesth (in press)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallet, R.T., Sun, J. Antioxidant properties of myocardial fuels. Mol Cell Biochem 253, 103–111 (2003). https://doi.org/10.1023/A:1026009519783

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026009519783

Navigation