Skip to main content
Log in

Increase in Anthraquinone Content in Rubia cordifolia Cells Transformed by rol Genes Does Not Involve Activation of the NADPH Oxidase Signaling Pathway

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

It has been reported that rol plant oncogenes located in Ri-plasmids of Agrobacterium rhizogenes activated synthesis of secondary metabolites in the transformed plant cells. The activator mechanism is still unknown. In this work, we studied whether the NADPH oxidase-signaling pathway, which regulates the synthesis of defense metabolites in plants, is involved in the activator function of the rol genes. It was demonstrated that the transformation of Rubia cordifolia cells by the rolB and rolC genes caused an induction of biosynthesis of anthraquinone-type phytoalexins. Inhibition studies revealed a striking difference between the rolC and rolB transformed cultures in their sensitivity to Ca2+ channel blockers and calcium deficiency. The rolC culture displayed lowered resistance to the inhibitors compared to the non-transformed culture, while the rolB culture was more resistant to the treatment. The assumption was made that the oncogenic potential of rol genes is realized through the alteration of calcium balance in the plant cells. Anthraquinone production was not inhibited in the non-transformed and transformed cultures by Ca2+ channel blockers, as well as by diphenylene iodonium, an inhibitor of NADPH oxidase, and by the protein kinase inhibitor staurosporine. These results indicate that the induction of anthraquinone production in transgenic cultures does not involve the activation of Ca2+-dependent NADPH oxidase pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Spena, A., Schmulling, T., Koncz, C., and Schell, J. S. (1987) EMBO J., 6, 3891-3899.

    Google Scholar 

  2. Bulgakov, V. P., Khodakovskaya, M. V., Labetskaya, N. V., Tchernoded, G. K., and Zhuravlev, Y. N. (1998) Phytochemistry, 49, 1929-1934.

    Google Scholar 

  3. Palazon, J., Cusido, R. M., Gonzalo, J., Bonfill, M., Morales, S., and Pinol, M. T. (1998) J. Plant. Physiol., 153, 712-718.

    Google Scholar 

  4. Bonhomme, V., Laurain Mattar, D., and Fliniaux, M. A. (2000) J. Natur. Prod., 63, 1249-1252.

    Google Scholar 

  5. Estruch, J. J., Schell, J., and Spena, A. (1991) EMBO J., 10, 3125-3128.

    Google Scholar 

  6. Estruch, J. J., Chriqui, D., Grossmann, K., Schell, J., and Spena, A. (1991) EMBO J., 10, 2889-2895.

    Google Scholar 

  7. Delbarre, A., Muller, P., Imhoff, V., Barbier-Brygoo, H., Maurel, C., Leblanc, N., Perrot-Rechenmann, C., and Guern, J. (1994) Plant Physiol., 105, 563-569.

    Google Scholar 

  8. Nilsson, O., Moritz, T., Sundberg, B., Sandberg, G., and Olsson, O. (1996) Plant Physiol., 112, 493-502.

    Google Scholar 

  9. Faiss, M., Strnad, M., Redig, P., Dolezal, K., Hanus, J., van Onckelen, H., and Schmulling, T. (1996) Plant J., 10, 33-46.

    Google Scholar 

  10. Philippini, F., Rossi, V., Marin, O., Trovato, M., Costantino, P., Downey, P. M., Schiavo, F., and Terzi, M. (1996) Nature, 379, 499-500.

    Google Scholar 

  11. Baumann, K., de Paolis, A., Costantino, P., and Gualberti, G. (1999) Plant Cell, 11, 323-333.

    Google Scholar 

  12. Xing, T., Higgins, V. J., and Blumwald, E. (1997) Plant Cell, 9, 249-259.

    Google Scholar 

  13. Romeis, T., Piedras, P., and Jones, J. D. G. (2000) Plant Cell, 12, 803-815.

    Google Scholar 

  14. Jabs, T., Tschope, M., Colling, C., Hahlbrock, K., and Scheel, D. (1997) Proc. Natl. Acad. Sci. USA, 94, 4800-4805.

    Google Scholar 

  15. Xing, T., Wang, X.-J., Malik, K., and Miki, B. L. (2001) Mol. Plant–Microbe Interact., 14, 1261-1264.

    Google Scholar 

  16. Kovtun, Y., Chiu, W.-L., and Sheen, J. (2000) Proc. Natl. Acad. Sci. USA, 97, 2940-2945.

    Google Scholar 

  17. Ono, E., Wong, H. L., Kawasaki, T., Hasegawa, M., Kodama, O., and Shimamoto, K. (2001) Proc. Natl. Acad. Sci. USA, 98, 759-764.

    Google Scholar 

  18. Hirschi, K. D. (1999) Plant Cell, 11, 2113-2122.

    Google Scholar 

  19. Blechert, S., Brodschelm, W., Holder, S., Kammerer, L., Kutchan, T. M., Mueller, M. J., Xia, Z.-Q., and Zenk, M. H. (1995) Proc. Natl. Acad. Sci. USA, 92, 4099-4105.

    Google Scholar 

  20. Cho, G. H., Kim, D. I., Pedersen, H., and Chin, C.-K. (1988) Biotechnol. Progr., 4, 184-188.

    Google Scholar 

  21. Bulgakov, V. P., Tchernoded, G. K., Mischenko, N. P., Khodakovskaya, M. V., Glazunov, V. P., Zvereva, E. V., Fedoreyev, S. A., and Zhuravlev, Y. N. (2002) J. Biotechnol., 97, 213-221.

    Google Scholar 

  22. Mischenko, N. P., Fedoreyev, S. A., Glazunov, V. P., Tchernoded, G. K., Bulgakov, V. P., and Zhuravlev, Y. N. (1999) Fitoterapia, 70, 552-557.

    Google Scholar 

  23. Pineros, M., and Tester, M. (1997) J. Membr. Biol., 157, 139-145.

    Google Scholar 

  24. Menke, F. L. H., Parchmann, S., Mueller, M. J., Kijne, J. W., and Memelink, J. (1999) Plant Physiol., 119, 1289-1296.

    Google Scholar 

  25. Xing, T., Malik, K., Martin, T., and Miki, B. L. (2001) Plant Mol. Biol., 46, 109-120.

    Google Scholar 

  26. Guo, Z.-J., Lamb, C., and Dixon, R. A. (1998) Plant Physiol., 118, 1487-1494.

    Google Scholar 

  27. Olivari, C., Albumi, C., Pugliarello, C. M., and Michelis, M. I. D. (2000) Plant Physiol., 122, 463-470.

    Google Scholar 

  28. Pafford, C. M., Simples, J. E., and Strong, J. A. (1995) Cell Calcium, 18, 400-410.

    Google Scholar 

  29. Arnoult, C., Lemos, J. R., and Florman, H. M. (1997) EMBO J., 16, 1593-1599.

    Google Scholar 

  30. Roder, F. T., Schmulling, T., and Gatz, C. (1994) Mol. Gen. Genet., 243, 32-38.

    Google Scholar 

  31. Capone, I., Spano, L., Cardarelli, M., Bellincampi, D., Petit, A., and Costantino, P. (1989) Plant Mol. Biol., 13, 43-52.

    Google Scholar 

  32. Sasabe, M., Takeuchi, K., Kamoun, S., Ichinose, Y., Govers, F., Toyoda, K., Shiraishi, T., and Yamada, T. (2000) Eur. J. Biochem., 267, 5005-5013.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bulgakov, V.P., Tchernoded, G.K., Mischenko, N.P. et al. Increase in Anthraquinone Content in Rubia cordifolia Cells Transformed by rol Genes Does Not Involve Activation of the NADPH Oxidase Signaling Pathway. Biochemistry (Moscow) 68, 795–801 (2003). https://doi.org/10.1023/A:1025091118544

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025091118544

Navigation