Skip to main content
Log in

Potential of wild species for genetic enhancement of some semi-arid food crops

  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Discovery and incorporation of genes from wild species provide means to sustain crop improvement, particularly when levels of resistance in the cultigens are low and virulent strains of pests and pathogens overcome the host plant resistance. The extent of utilization and the potential of the wild genepool for genetic enhancement were reviewed in five important food crops viz. sorghum, pearl millet, chickpea, pigeonpea and groundnut grown in the semi-arid tropics. Introgression from compatible wild germplasm in the primary gene pool resulted in transfer of new cytoplasmic male sterility systems in pearl millet and pigeonpea, development of high protein, cleistogamous flower and dwarf pigeonpea lines and foliar disease resistant groundnut cultivars. Utilization of wild species in secondary and tertiary gene pools has been generally limited due to sterility, restricted recombination or cross incompatibility. Nevertheless, these species are extremely important as they contain high levels of resistance to several important biotic and abiotic stresses. Several of them, like those belonging to the Parasorghum section and the rhizomatous Arachis species are sources of multiple resistances and hold great promise to sustain crop productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abdou Y.A.M., Gregory W.C. and Cooper W.E. 1974. Sources and nature of resistance to Cercospora arachidicola Hori and Cercospora personatum (Berk et Curtis) Deighton in Arachis species. Peanut Sci. 1: 6-11.

    Google Scholar 

  • Akinola J.O., Whiteman P.C. and Wallis E.S. 1975. The agronomy of pigeonpea (Cajanus cajan). Commonwealth Bureau of Pas tures and Field Crops Review Series 1, pp. 57.

  • Amaya F.J., Young C.T. and Hammon R.O. 1977. The tryptophan content of the U.S. commercial and some South American wild genotypes of the genus Arachis. A survey. Oleagineux 32: 225-229.

    Google Scholar 

  • Ariyanayagam R.P., Rao A.N. and Zaveri P.P. 1995. Cytoplasmic geneic male sterility in interspecific matings of Cajanus. Crop Sci. 35: 981-985.

    Google Scholar 

  • AusPGRIS (Australian Plant Genetic Resources Information Ser-vices) 2002a. Summary statistics for species matching: Sorghum (Online Database). Available: http: / /www.dpi.qld.gov.au/ extra / asp/AusPGRIS/ Scripts / Display-Summary-Statistics.asp ?whichOne=Genus-Species&match=Sorghum (verified 1 April 2002).

  • AusPGRIS (Australian Plant Genetic Resources Information Ser-vices) 2002b. Summary statistics for species matching: Cajanus (Online Database). Available: http: / /www.dpi.qld.gov.au/ extra / asp/AusPGRIS/ Scripts / Display-Summary-Statistics.asp-?whichOne=Genus-Species&match=Cajanus (verified 1 April 2002).

  • Bapat D.R. and Mote U.N. 1983. Sources of shootfly resistance in sorghum. J. Maharashtra Agri. Univ. 7: 238-240.

    Google Scholar 

  • Bramel-Cox P.J. and Cox T.S. 1988. Use of wild sorghums in rd sorghum improvement. In: Wilkinson D. (ed.), Proc. 43rd Ann. Corn & Sorghum Industry Res. Conf. Amer. Seed Trade Assoc., Washington D.C., pp. 13-26.

  • Brinsmead R.B., Rettke M.L., Irwin J.A.G., Ryley M.J. and Lan-gdon W. 1985. Resistance in chickpea to Phytophthora megas-perma f. sp. medicaginis. Plant Dis. 69: 504-506.

    Google Scholar 

  • Cocking E.C. 1985. Protoplast fusion and its application in agricul-ture In: Biotechnology in International Agricultural Research. Proceedings of the inter-center seminar on International Agricul-tural Research Centers (IARCs) and Biotechnology. IRRI, Manila, Philippines, pp. 182-187.

    Google Scholar 

  • Demski J.W. and Sowell G. Jr. 1981. Resistance to peanut mottle virus in Arachis sp. Peanut Sci. 8: 43-44.

    Google Scholar 

  • de Wet J.M.J. 1978. Systematics and evolution of Sorghum Sect. Sorghum (Gramineae). Amer. J. Bot. 65: 477-484.

    Google Scholar 

  • Di Vito M., Singh K.B., Greco N. and Saxena M.C. 1996. Sources of resistance to cyst nematode in cultivated and wild Cicer species. Genet. Resour. Crop Evol. 43: 103-107.

    Google Scholar 

  • Dodia D.A., Patel A.J., Patel I.S., Dhulia F.K. and Tikka S.B.S. 1996. Antibiotic effect of pigeonpea wild relatives on Heliothis armigera. Int. Chickpea & Pigeonpea Newsl. 3: 100-101.

    Google Scholar 

  • Dujardin M. and Hanna W.W. 1989. Crossability of pearl millet with wild Pennisetum species. Crop Sci. 29: 77-80.

    Google Scholar 

  • Duncan R.R., Bramel-Cox P.J. and Miller F.R. 1991. Contributions of introduced sorghum germplasm to hybrids development in the USA. In: Shands H.L. and Wiesner L.E. (eds), Use of plant Introductions in Cultivar Development, Part 1. Crop Sci. Soc. Amer. Inc., Madison, USA CSSA Special Publication no. 17., pp. 69-101.

    Google Scholar 

  • Dundas I.S. 1990. Pigeonpea. Cytology and cytogenetics-perspectives and prospects. In: Nene Y.L., Hall S.D. and Sheila V.K. (eds), The Pigeonpea. C.A.B. International, Wallingford, UK, pp. 117-136.

    Google Scholar 

  • Franzmann B.A. and Hardy A.T. 1996. Testing the host status of Australian indigenous sorghums for the sorghum midge In: Foale M.A., Henzel R.A. and Kneipp J.F.(eds), Proceedings of 3 Australian Sorghum Conference. Australian Institute of Agricultural Sciences, Melbourne, pp. 365-376.

    Google Scholar 

  • Frederiksen R.A. and Duncan R.R. 1982. Sorghum diseases in North America. In: de Milliano W.A.J., Frederiksen R.A. and Bengston G.D. (eds), Sorghum and Millet Diseases: A Second World Review. ICRISAT, Patancheru, India, pp. 85-88.

    Google Scholar 

  • Gregory W.C., Gregory M.P., Krapovickas A., Smith B.W. and Yarbrough J.A. 1973. Peanuts. Cultures and Uses. Amer. Peanut Res. Edu. Asso., Stillwater, USA.

    Google Scholar 

  • Hammons R.O. 1970. Registration of Spancross peanut. Crop Sci. 10: 459.

    Google Scholar 

  • Hanna W.W. 1987. Utilization of wild relatives of pearl millet Proceedings of International Pearl Millet Workshop. ICRISAT, Patancheru, India, pp. 33-42.

    Google Scholar 

  • Hanna W.W. 1989. Characteristics and stability of a new nuclear-cytoplasmic male sterile sources in pearl millet. Crop Sci. 29: 1457-1459.

    Google Scholar 

  • Hanna W.W. 1992. Utilization of germplasm from wild species. In: Hanna W.W. (ed.), Desertified Grass Lands. Their Biology and Management. The Linnean Society of London, London, pp. 251-257.

    Google Scholar 

  • Hanna W.W. 1997. Influence of cytoplasms from a wild grassy subspecies on dry matter yields in pearl millet. Crop Sci. 37: 614-616.

    Google Scholar 

  • Hanna W.W. and Dujardin M. 1986. Cytogenetics of Pennisetum schweinfurthii Pilgerand its hybrids with pearl millet. Crop Sci. 26: 449-453.

    Google Scholar 

  • Harlan J.R. and de Wet J.M.J. 1971. Towards a rational classifica-tion of cultivated plants. Taxon 20: 509-517.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Kameswara Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kameswara Rao, N., Reddy, L. & Bramel, P. Potential of wild species for genetic enhancement of some semi-arid food crops. Genetic Resources and Crop Evolution 50, 707–721 (2003). https://doi.org/10.1023/A:1025055018954

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025055018954

Navigation