Skip to main content
Log in

The Effects of the Self-Consistent Field of Electrons and Γ–X-Intervalley Scattering on Resonant Tunneling in Double-Barrier Structures

  • Published:
Russian Physics Journal Aims and scope

Abstract

The self-consistent electron field approximation is used to calculate the current-voltage characteristics and electron-transmission and tunneling-time spectra in GaAs/AlAs (001) semiconductor heterostructures within the three-valley effective-mass model and to study the effect of the composite band spectrum of GaAs and AlAs materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. I. I. Finley, R. J. Teissier, M. S. Skolnick, et al., Phys. Rev. B., 58, 10619 (1998).

    Google Scholar 

  2. M. V. Petrov, S. R. Parihar, and S. A. Lyon, Phys. Rev. B., 54, 13858 (1996).

    Google Scholar 

  3. I. I. Finley, R. J. Teissier, M. S. Skolnick, et al., Phys. Rev. B., 54, 5251 (1996).

    Google Scholar 

  4. T. Osotchan, U. W. I. Chin, and Y. I. Tansley, Phys. Rev. B., 54, 2059 (1996).

    Google Scholar 

  5. T. Stovneng and P. Lipavsky, Phys. Rev. B., 49, 16494 (1994).

    Google Scholar 

  6. T. Ando, S. Wakahara, and H. Akera, Phys. Rev. B., 40, 11609 (1989).

    Google Scholar 

  7. T. Ando and H. Akera, Phys. Rev. B., 40, 11618 (1989).

    Google Scholar 

  8. G. F. Karavaev, S. N. Grinyaev, and V. N. Chernyshov, Russ. Phys. J., No. 9, 830–841 (1992).

  9. G. F. Karavaev, S. N. Grinyaev, and V. N. Chernyshov, Fiz. Tekh. Poluprovodn., 28, 1393 (1993).

    Google Scholar 

  10. D. Z.-Y. Ting and T. C. McGill, J. Vac. Sci. Technol. b., 7, 1031 (1989).

    Google Scholar 

  11. D. Z.-Y. Ting and T. C. McGill, J. Vac. Sci. Technol. b., 10, 1980 (1992).

    Google Scholar 

  12. E. H. Hauge and J. A. Stovneng, Rev. Mod. Phys., 61, 917 (1989).

    Google Scholar 

  13. V. S. Olkhovsky and E. Rcoami, Phys. Reports., 214, 339 (1992).

    Google Scholar 

  14. R. Landauer and Th. Martin, Rev. Mod. Phys., 66, 217 (1994).

    Google Scholar 

  15. T. E. J. Hartman, Appl. Phys., 33, 3427 (1962).

    Google Scholar 

  16. K. W. H. Stevens, J. Phys. C., 16, 3649 (1983).

    Google Scholar 

  17. D. Collins, D. Lowe, and J. R. Barker, J. Phys. C., 20, 6213 (1987).

    Google Scholar 

  18. N. A. Chuprikov, Fiz. Tekh. Poluprovodn., 27, 799 (1993).

    Google Scholar 

  19. J. G. Muga and H. Cruz, Physica B., 179, 326 (1992).

    Google Scholar 

  20. V. D. Dymnikov, and O. V. Konstantinov, Fiz. Tekh. Poluprovodn., 28, 844 (1994).

    Google Scholar 

  21. K. Gyungock, Ho-Hyung Suh, and El-Hang Lee, Phys. Rev. B., 52, 2632 (1995).

    Google Scholar 

  22. C. E. T. Goncalves da Silva, and E. E. Mendez, Phys. Rev. B., 38, 3994 (1988).

    Google Scholar 

  23. T. Osotchan, V. W. L. Chin, and T. L. Tansley, Phys. Rev. B., 52, 5202 (1995).

    Google Scholar 

  24. W. Potz, J. Appl. Phys., 66, 2458 (1989).

    Google Scholar 

  25. G. F. Karavayev, V. N. Chernyshov, and A. A. Voronkov, Russ. Phys. J., 40, No. 1, 54–60 (1997).

    Google Scholar 

  26. H. Ohnishi, T. Inato, S. Muto, et al., Appl. Phys. Lett., 49, 1248 (1986).

    Google Scholar 

  27. T. Ando and H. Akera, Proc. 19th Internat. Conf. on the Physics of Semicond / Ed. by W. Zawadzki. (Institute of Physics, Polish Academy of Sciences. Warsaw), p. 603 (1988).

    Google Scholar 

  28. J.-B. Xia, Phys. Rev. B., 41, 3117 (1990).

    Google Scholar 

  29. E. L. Ivchenko, A. A. Kiselev, Y. Fu, and M. W. Willander, Phys. Rev. B., 50, 7747 (1994).

    Google Scholar 

  30. C. Y. Chao and S. L. Chuang, Phys. Rev. B., 43, 7027 (1991).

    Google Scholar 

  31. Y. X. Liu, D.Z.-Y. Ting, and T. C. McGill, Phys. Rev. B., 54, 5675 (1996).

    Google Scholar 

  32. G. F. Karavayev and A. A. Voronkov, Russ. Phys. J., No. 10, 809–816 (2000).

  33. A. F. M. Anwar and M. Jahan Mizza, Phys. Rev. B., 49, 17440 (1994).

    Google Scholar 

  34. E. P. Wigner, Phys. Rev., 98, 145 (1955).

    Google Scholar 

  35. M. L. Goldberg and K. Watson, Collision Theory.-New York-London-Sydney: J. Wiley (1964).

    Google Scholar 

  36. K. Brennan and C. Summers, J. Appl. Phys., 61, 614 (1987).

    Google Scholar 

  37. G. F. Karavaev and A. A. Voronkov, Russ. Phys. J., 42, No. 9, 801–809 (1999).

    Google Scholar 

  38. C. Huang, R. Paulus, C. Bozada, et al., Appl. Phys. Lett., 51, 121 (1987).

    Google Scholar 

  39. P. Cheng and J. Harris, Appl. Phys. Lett., 56, 1676 (1990).

    Google Scholar 

  40. M. Ya. Azbel, Phys. Rev. B., 59, 8049 (1999).

    Google Scholar 

  41. E. Kececioglu and M. C. Yalabik, Phys. Rev. B., 59, 2111 (1999).

    Google Scholar 

  42. K. N. Alekseev, G. P. Berman, and D. K. Campbell, Phys. Rev. B., 58, 3954 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karavaev, G.F., Voronkov, A.A. The Effects of the Self-Consistent Field of Electrons and Γ–X-Intervalley Scattering on Resonant Tunneling in Double-Barrier Structures. Russian Physics Journal 46, 81–90 (2003). https://doi.org/10.1023/A:1024060905260

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024060905260

Keywords

Navigation