Skip to main content
Log in

In-situ Formation of Light-Absorbing Organic Matter in Cloud Water

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Current climate models seem to underestimate the flux of solar energy absorbed by the global troposphere. All of these models are constrained with the assumption that cloud droplets consist of pure water. Here we demonstrate in a simple laboratory experiment that aromatic hydroxy-acids which are found in continental fine aerosol can react with hydroxyl radicals under typical conditions prevalent in cloud water influenced by biomass burning. The reactions yield colored organic species which do absorb solar radiation. We also suggest that the products of such reactions may be humic-like substances whose presence in continental aerosol has been confirmed but their source mechanisms are still much sought after. We also attempt to give a first order estimate of the enhancement of water absorption at a visible wavelength under atmospheric conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andreae, M. O. and Crutzen, P. J., 1997: Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry, Science 276, 1052–1058.

    Google Scholar 

  2. Rogge, W. F., Mazurek, M. A., Hildemann, L. M., Cass, G. R., and Simoneit, B. R. T., 1993: Quantification of urban organic aerosol at a molecular level: Identification, abundance and seasonal variation, Atmos. Environ. 27A, 1309–1330.

    Google Scholar 

  3. Mayol-Bracero, O. L., Guyon, P., Graham, B., Roberts, G., Andreae, M. O., Decesari, S., Facchini, M. C., Fuzzi, S., and Artaxo, P., 2001: Water soluble organic compounds in biomass burning aerosol over Amazonia: Apportionment of the chemical composition and importance of the polyacidic fraction, J. Geophys. Res., in press.

  4. Graham, B., Mayol-Bracero, O. M., Guyon, P., Roberts, G., Decesari, S., Facchini, M. C., Artaxo, P., Maenhaut, W., Köll, P., and Andreae, M. O., 2001:Water soluble organic compounds in biomass burning aerosol over Amazonia: 1. Characterization by NMR and GC-MS, J. Geophys. Res., in press.

  5. Penner, J. E., 1994: Carbonaceous aerosols influencing atmospheric radiation: Black and organic carbon, in R. J. Charlson and J. Heintzenberg (eds), Aerosol Forcing of Climate, John Wiley & Sons, Berlin, pp. 91–108.

    Google Scholar 

  6. Duce, R. A., 1994: Sources, distributions, and fluxes of mineral aerosols and their relationship to climate, in R. J. Charlson and J. Heintzenberg (eds), Aerosol Forcing of Climate, John Wiley & Sons, Berlin, pp. 43–72.

    Google Scholar 

  7. Gelencsér, A., Mészáros, T., Blazsó, M., Kiss, G., Krivácsy, Z., Molnár, A., and Mészáros, E., 2000: Structural characterisation of organic matter in fine tropospheric aerosol by pyrolysis-gas chromatography-mass spectrometry, J. Atmos. Chem. 37, 173–183.

    Google Scholar 

  8. Zappoli, S., Andracchio, A., Fuzzi, S., Facchini, M. C., Gelencsér, A., Kiss, G., Krivácsy, Z., Molnár, A., Mészáros, E., Hansson, H. C., and Rosman, K., 1999: Inorganic, organic and macromolecular components of fine aerosol in different areas of Europe in relation to their water solubility, Atmos. Environ. 33, 2733–2743.

    Google Scholar 

  9. Gelencsér, A. Hoffer, A., Krivácsy, Z., Molnár, A., and Mészáros, E., 2001: On the possible origin of humic matter in fine continental aerosol, J. Geophys. Res., in press

  10. Talbot, R. W., Andreae, M. O., Andreae, T. W., and Hamss, R. C., 1988: Regional aerosol chemistry of the Amazon basin during the dry season, J. Geophys. Res. 93, 1499–1508.

    Google Scholar 

  11. Richards, G. N., Shafizadeh, F., and Stevenson, T. T., 1983: Influence of sodium chloride on volatile products formed by pyrolysis of cellulose: Hydroxybenzenes and 1-hydroxy-2-propanone as major products, Carbohydr. Res. 117, 322–327.

    Google Scholar 

  12. Facchini, M. C., Fuzzi, S., Zappoli, S., Andracchio, A., Gelencsér, A., Kiss, G., Krivácsy, Z., Mészáros, E., Hansson, H. C., Alsberg, T., and Zebühr, Y., 1999: Partitioning of the organic aerosol component between fog droplets and interstitial air, J. Geophys. Res. 104, 26,821–26,832.

    Google Scholar 

  13. Lelieveld, J. and Crutzen, P. J., 1991: The role of clouds in tropospheric photochemistry, J. Atmos. Chem. 12, 229–267.

    Google Scholar 

  14. Herrmann, H., Ervens, B., Jacobi, H. W., Wolke, R., Nowacki, P., and Zellner, R., 2000: CAPRAM2.3: A chemical aqueous phase radical mechanism for tropospheric chemistry, J. Atmos. Chem. 36, 231–284.

    Google Scholar 

  15. Gunz, D. W. and Hoffmann, M. R., 1990: Atmospheric chemistry of peroxides: A review, Atmos. Environ. 24A, 1601–1633.

    Google Scholar 

  16. Dwibedy, P., Dey, G. R., Naik, D. B., Kishore, K., and Moorthy, P. N., 1999: Pulse radiolysis studies on redox reactions of gallic acid: One electron oxidation of gallic acid by gallic acid OH adduct, Phys. Chem. Chem. Phys. 1, 1915–1918.

    Google Scholar 

  17. Senesi, N. and Steelink, C., 1989: Application of ESR spectroscopy to the study of humic substances, in M. B. H. Hayes, P. MacCarthy, R. L. Malcolm, R. S. Swift (eds) Humic Substances II. In Search of Structure, Wiley, New York, pp. 373–408.

    Google Scholar 

  18. Wang, T. S. C., Wang, M. C., Ferng, Y. L., and Huang, P. M., 1983: Catalytic synthesis of humic substances by natural clays, silts and soils, Soil Sci. 135, 350–360.

    Google Scholar 

  19. Tombácz, E., Szekeres, M., Baranyi, L., and Michéli, E., 1998: Surface modification of clay minerals by organic polyions, Colloids Surf. 141, 379–384.

    Google Scholar 

  20. Wiscombe, W. J., 1995: An absorbing mystery, Nature 376, 466–467.

    Google Scholar 

  21. Li, Z., Barker, H. W., and Moreau, L., 1995: The variable effect of clouds on atmospheric absorption of solar radiation, Nature 376, 486–490.

    Google Scholar 

  22. Ramanathan, V., Valero, F. P. J., and Cess, R. D., 1996: Excess solar absorption in cloudy atmospheres, GEWEX News 6, 6–7.

    Google Scholar 

  23. Twohy, C. H., Clarke, A. D., Warren, S. G., Radke, L. F., and Charlson, R. J., 1989: Light-absorbing material extracted from cloud droplets and its effect on cloud albedo, J. Geophys. Res. 94, 8,623–8,631.

    Google Scholar 

  24. Horvath, H., 1995: Atmospheric light absorption – a review, Atmos. Environ. 27A, 293–317.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gelencsér, A., Hoffer, A., Kiss, G. et al. In-situ Formation of Light-Absorbing Organic Matter in Cloud Water. Journal of Atmospheric Chemistry 45, 25–33 (2003). https://doi.org/10.1023/A:1024060428172

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024060428172

Navigation