Skip to main content
Log in

HIV-1 Tat protein and endothelium: From protein/cell interaction to AIDS-associated pathologies

  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Tat protein, the transactivating factor of the human immunodeficiency virus type 1 (HIV-1), is a small cationic polypeptide that can be released from HIV-1 infected cells. Extracellular Tat elicits different biological responses in several types of target cells, including endothelial cells (ECs). In the present paper, we will review the various aspects from the laboratory bench to the bedside that characterize the tight relationship that exists between HIV-1 Tat and the endothelium. Tat interacts with at least three different types of receptors present on the surface of ECs. This leads to the activation of several signal transduction pathways and triggers various biological responses in the endothelium. The bioavailability, cell interaction, intracellular signaling, and biological activity of Tat are tightly regulated by components of the extracellular matrix and circulating molecules. Thus, Tat is at the center of a complex network of interactions that occur at the surface of ECs and that greatly affect the functions of the endothelium, possibly resulting in some of the pathological processes that occur in AIDS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Price RW. Neurological complications of HIV infection. Lancet 1996; 348: 445–52.

    Google Scholar 

  2. Burke AP, Benson W, Ribas JL et al. Postmortem localization of HIV-1 RNA by in situ hybridization in lymphoid tissues of intravenous drug addicts who died unexpectedly. Am J Pathol 1993; 142: 1701–13.

    Google Scholar 

  3. Fauci AS. Multifactorial nature of human immunodeficiency virus disease: Implications for therapy. Science 1993; 262: 1011–18.

    Google Scholar 

  4. Hopewell PC, Luce JM. Pulmonary involvement in the acquired immunodeficiency syndrome. Chest 1985; 87: 104–12.

    Google Scholar 

  5. McSherry GD. Human immunodeficiency-virus-related pulmonary infections in children. Semin Respir Infect 1996; 11: 173–83.

    Google Scholar 

  6. Klotman PE. HIV-associated nephropathy. Kidney Int 1999; 56: 1161–76.

    Google Scholar 

  7. Terada LS, Gu Y, Flores SC. AIDS vasculopathy. Am J Med Sci 2000; 320: 379–87.

    Google Scholar 

  8. Patel RC, Frishman WH. Cardiac involvement in HIV infection. Med Clin North Am 1996; 80: 1493–512.

    Google Scholar 

  9. Caputo A, Betti M, Boarini C et al. Multiple functions of human immunodeficiency virus type 1 Tat protein in the pathogenesis of AIDS. Recent Res Devel Virol 1999; I: 753–71.

    Google Scholar 

  10. Pohlmann S, Soilleux EJ, Baribaud F et al. DC-SIGNR,a DCSIGN homologue expressed in ECs,binds to human and simian immunodeficiency viruses and activates infection in trans. Proc Natl Acad Sci USA 2001; 98: 2670–5.

    Google Scholar 

  11. Gujuluva C, Burns AR, Pushkarsky T et al. HIV-1 penetrates coronary artery ECs by transcytosis. Mol Med 2001; 7: 169–76.

    Google Scholar 

  12. Glasgow BJ. Evidence for breaches of the retinal vasculature in acquired immune deficiency syndrome angiopathy. A fluorescent microsphere study. Ophthalmology 1997; 104: 753–60.

    Google Scholar 

  13. Newsome DA, Green WR, Miller ED et al. Microvascular aspects of acquired immune deficiency syndrome retinopathy. Am J Ophthalmol 1984; 98: 590–601.

    Google Scholar 

  14. Zietz C, Hotz B, Sturzl M et al. Aortic endothelium in HIV-1 infection: Chronic injury, activation, and increased leukocyte adherence. Am J Pathol 1996; 149: 1887–98.

    Google Scholar 

  15. Chi D, Henry J, Kelley J et al. The effects of HIV infection on endothelial function. Endothelium 2000; 7: 223–42.

    Google Scholar 

  16. Bussolino F, Mitola S, Serini G et al. Interactions between ECs and HIV-1. Int J Biochem Cell Biol 2001; 33: 371–90.

    Google Scholar 

  17. Moses AV, Nelson JA. HIV infection of human brain capillary ECs-implications for AIDS dementia. Adv Neuroimmunol 1994; 4: 239–47.

    Google Scholar 

  18. Kanmogne GD, Grammas P, Kennedy RC. Analysis of human ECs and cortical neurons for susceptibility to HIV-1 infection and co-receptor expression. J Neurovirol 2000; 6: 519–28.

    Google Scholar 

  19. Kanmogne GD, Kennedy RC, Grammas P. Analysis of human lung ECs for susceptibility to HIV type 1 infection,coreceptor expression,and cytotoxicity of gp120 protein. AIDS Res Hum Retroviruses 2001; 17: 45–53.

    Google Scholar 

  20. Noonan D, Albini A. From the outside in: Extracellular activities of HIV Tat. Adv Pharmacol 2000; 48: 229–50.

    Google Scholar 

  21. Zagury D, Lachgar A, Chams V et al. Interferon alpha and Tat involvement in the immunosuppression of uninfected T cells and C-C chemokine decline in AIDS. Proc Natl Acad Sci USA 1998; 95: 3851–6.

    Google Scholar 

  22. Gatignol A, Jeang KT. Tat as a transcriptional activator and a potential therapeutic target for HIV-1. Adv Pharmacol 2000; 48: 209–27.

    Google Scholar 

  23. Westendorp MO, Frank R, Ochsenbauer C et al. Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120. Nature 1995; 375: 497–500.

    Google Scholar 

  24. Dewhurst S, Gelbard HA, Fine SM. Neuropathogenesis of AIDS. Mol Med Today 1996; January: 16–23.

  25. Rusnati M, Presta M. Interaction of angiogenic basic fibroblast growth factor with endothelial cell heparan sulfate proteoglycans: Biological implications in neo-vascularization. Int J Clin Labor Res 1996; 26: 15–23.

    Google Scholar 

  26. Ullrich A, Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell 1990; 61: 203–12.

    Google Scholar 

  27. Rusnati M, Urbinati C, Presta M. Internalization of basic fibroblast growth factor (bFGF) in cultured ECs: Role of the low affinity heparin-like bFGF-receptors. J Cell Physiol 1993; 154: 152–61.

    Google Scholar 

  28. Fedarko NS, Conrad E. A unique heparan sulfate in the nuclei of hepatocytes: Structural changes with the growth state of the cells. J Cell Biol 1986; 102: 587–99.

    Google Scholar 

  29. Rusnati M, Coltrini D, Oreste P et al. Interaction of HIV-1 Tat protein with heparin: Role of the backbone structure,sulfation, and size. J Biol Chem 1997; 272: 11313–20.

    Google Scholar 

  30. Rusnati M, Tulipano G, Urbinat C et al. The basic domain in HIV-1 Tat protein as a target for polysulfated heparin-mimicking extracellular Tat antagonists. J Biol Chem 1998; 273: 16027–37.

    Google Scholar 

  31. Rusnati M, Tulipano G, Spillmann D et al. Multiple interaction of HIV-1 Tat protein with size-defined heparin oligosaccharides. J Biol Chem 1999; 274: 28198–205.

    Google Scholar 

  32. Tyagi M, Rusnati M, Presta M et al. Internalization of HIV-1 Tat requires cell surface heparan sulfate proteoglycan. J Biol Chem 2001; 276: 3254–61.

    Google Scholar 

  33. Chang HC, Samaniego F, Nair BC et al. HIV-1 Tat protein exits from cells via a leaderless secretory pathway and binds to extracellular matrix-associated heparan sulfate proteoglycans through its basic region. AIDS 1997; 11: 1421–31.

    Google Scholar 

  34. Mitola S, Soldi R, Zanon I et al. Identification of specific molecular structures of human immunodeficiency virus type 1 Tat relevant for its biological effects on vascular ECs.J Virol 2000; 74: 344–53.

    Google Scholar 

  35. Rusnati M, Tanghetti E, Dell'Era P et al. Alphavbeta3 integrin mediates the cell-adhesive capacity and biological activity of basic fibroblast growth factor (FGF-2) in cultured endothelial cells. Mol Biol Cell 1997; 8: 2449–61.

    Google Scholar 

  36. Barillari G, Sgadari C, Fiorelli V et al. The Tat protein of human immunodeficiency virus type-1 promotes vascular cell growth and locomotion by engaging the alpha5beta1 and alphavbeta3 integrins and by mobilizing sequestered basic fibroblast growth factor. Blood 1999; 94: 663–72.

    Google Scholar 

  37. Fiorelli V, Barillari G, Toschi E et al. IFN-gamma induces ECs to proliferate and to invade the extracellular matrix in response to the HIV-1 Tat protein: Implications for AIDS-Kaposi's sarcoma pathogenesis. J Immunol 1999; 162: 1165–70.

    Google Scholar 

  38. Barillari G, Gendelman R, Gallo R et al. The Tat protein of human immunodeficiency virus type 1,a growth factor for AIDS Kaposi sarcoma and cytokine-activated vascular cells,induces adhesion of the same cell types by using integrin receptors recognizing the RGD amino acid sequence. Proc Natl Acad Sci USA 1993; 90: 7941–5.

    Google Scholar 

  39. Barillari G, Sgadari C, Palladino C et al. Inflammatory cytokines synergize with the HIV-1 Tat protein to promote angiogenesis and Kaposi's sarcoma via induction of basic fibroblast growth factor and the alpha v beta 3 integrin. J Immunol 1999; 163: 1929–35.

    Google Scholar 

  40. Vogel BE, Lee SJ, Hildebrand A et al. A novel integrin specificity exemplified by binding of the alpha v beta 5 integrin to the basic domain of the HIV Tat protein and vitronectin. J Cell Biol 1993; 121: 461–8.

    Google Scholar 

  41. Conforti G, Dominguez-Jimenez A, Zanetti MA et al. Human ECs express integrin receptors on the luminal aspect of their membrane. Blood 1992; 80: 437–46.

    Google Scholar 

  42. Albini A, Soldi R, Giunciuglio D et al. The angiogenesis induced by HIV-1 tat protein is mediated by the Flk-1/KDR receptor on vascular ECs. Nat Med 1996; 2: 1371–5.

    Google Scholar 

  43. Arese M, Ferrandi C, Primo L et al. HIV-1 Tat protein stimulates in vivo vascular permeability and lymphomononuclear cell recruitment. J Immunol 2001; 166: 1380–88.

    Google Scholar 

  44. Giraudo E, Primo L, Audero E et al. Tumor necrosis factor-alpha regulates expression of vascular endothelial growth factor receptor-2 and of its co-receptor neuropilin-1 in human vascular ECs. J Biol Chem 1998; 273: 22128–35.

    Google Scholar 

  45. Rusnati M, Urbinati C, Caputo A et al. Pentosan polysulfate as an inhibitor of extracellular HIV-1 Tat. J Biol Chem 2001; 276: 22420–5.

    Google Scholar 

  46. Mosher DF. Physiology of thrombospondin. Annu Rev Med 1990; 41: 85–97.

    Google Scholar 

  47. Schon P, Vischer P, Volker W et al. Cell-associated proteoheparan sulfate mediates binding and uptake of thrombospondin in cultured porcine vascular ECs. Eur J Cell Biol 1992; 59: 329–39.

    Google Scholar 

  48. Taraboletti G, Roberts D, Liotta LA et al. Platelet thrombospondin modulates endothelial cell adhesion,motility, and growth: A potential angiogenesis regulatory factor. J Cell Biol 1990; 111: 765–72.

    Google Scholar 

  49. Iruela-Arispe ML, Bornstein P, Sage H. Thrombospondin exerts an antiangiogenic effect on cord formation by ECs in vitro. Proc Natl Acad Sci USA 1991; 88: 5026–30.

    Google Scholar 

  50. Taraboletti G, Belotti D, Borsotti P et al. The 140-kilodalton antiangiogenic fragment of thrombospondin-1 binds to basic fibroblast growth factor. Cell Growth Differ 1997; 8: 471–9.

    Google Scholar 

  51. Rusnati M, Taraboletti G, Urbinati C et al. Thrombospondin-1/ HIV-1 tat protein interaction: Modulation of the biological activity of extracellular Tat. FASEB J 2000; 14: 1917–30.

    Google Scholar 

  52. Taraboletti G, Benelli R, Borsotti P et al. Thrombospondin-1 inhibits Kaposi's sarcoma (KS) cell and HIV-1 Tat-induced angiogenesis and is poorly expressed in KS lesions. J Pathol 1999; 188: 76–81.

    Google Scholar 

  53. Cavallaro U, Mariotti M, Wu ZH et al. Fibronectin modulates endothelial response to HIV type 1 Tat. AIDS Res Hum Retroviruses 1997; 13: 1341–8.

    Google Scholar 

  54. Taylor JP, Cupp C, Diaz A et al. Activation of expression of genes coding for extracellular matrix proteins in Tat-producing glioblastoma cells. Proc Natl Acad Sci USA 1992; 89: 9617–21.

    Google Scholar 

  55. Maroder M, Scarpa S, Screpanti I et al. Human immunodeficiency virus type 1 tat protein modulates fibronectin expression in thymic epithelial cells and impairs in vitro thymocyte development. Cell Immunol 1996; 168: 49–58.

    Google Scholar 

  56. McArthur CP, Wang Y, Heruth D et al. Amplification of extracellular matrix and oncogenes in tat-transfected human salivary gland cell lines with expression of laminin,fibronectin, collagens I,III, IV,c-myc and p53. Arch Oral Biol 2001; 46: 545–55.

    Google Scholar 

  57. Trinh DP, Brown KM, Jeang KT. Epithelin/granulin growth factors: Extracellular cofactors for HIV-1 and HIV-2 Tat proteins. Biochem Biophys Res Commun 1999; 256: 299–306.

    Google Scholar 

  58. Shoyab M, McDonald VL, Byles C et al. Epithelins 1 and 2: Isolation and characterization of two cysteine-rich growth-modulating proteins. Proc Natl Acad Sci USA 1990; 87: 7912–16.

    Google Scholar 

  59. Tanghetti E, Ria R, Dell'Era P et al. Biological activity of substrate-bound basic fibroblast growth factor (FGF-2): Recruitment of FGF receptor-1 in endothelial cell adhesion contacts Oncogene 2001; 21: 3889–97.

    Google Scholar 

  60. Zidovetzki R, Wang JL, Chen P et al. Human immunodeficiency virus Tat protein induces interleukin 6 mRNA expression in human brain ECs via protein kinase C-and cAMP-dependent protein kinase pathways. AIDS Res Hum Retroviruses 1998; 14: 825–33.

    Google Scholar 

  61. Park IW, Wang JF, Groopman JE. HIV-1 Tat promotes monocyte chemoattractant protein-1 secretion followed by transmigration of monocytes. Blood 2001; 97: 352–8.

    Google Scholar 

  62. Cota-Gomez A, Flores NC, Cruz C et al. The human immunodeficiency virus-1 Tat protein activates endothelial cell E-selectin expression via an NF-kappa-dependent mechanism. J Biol Chem 2002; 277: 14390–9.

    Google Scholar 

  63. Dhawan S, Puri RK, Kumar A et al. Human immunodeficiency virus-1-tat protein induces the cell surface expression of endothelial leukocyte adhesion molecule-1,vascular cell adhesion molecule-1,and intercellular adhesionmolecule-1 in human ECs. Blood 1997; 90: 1535–44.

    Google Scholar 

  64. Rusnati M, Urbinati C, Musulin B et al. Activation of endothelial cell mitogen activated protein kinase ERK1/2 by extracellular HIV-1 Tat protein. Endothelium 2001; 8: 65–74.

    Google Scholar 

  65. Scheidegger P, Weiglhofer W, Suarez S et al. Signalling properties of an HIV-encoded angiogenic peptide mimicking vascular endothelial growth factor activity. Biochem J 2001; 353: 569–78.

    Google Scholar 

  66. Eliceri BP, Klemke R, Stromblad S et al. Integrin avb3 requirement for sustained mitogen-activated protein kinase activity during angiogenesis. J Cell Biol 1998; 140: 1255–63.

    Google Scholar 

  67. Giuliani R, Bastaki M, Coltrini D et al. Role of endothelial cell extracellular signal-regulated kinase1/2 in urokinase-type plasminogen activator upregulation and in vitro angiogenesis by fibroblast growth factor-2. J Cell Sci 1999; 112: 2597–606.

    Google Scholar 

  68. Oshima T, Flores SC, Vaitaitis G et al. HIV-1 Tat increases endothelial solute permeability through tyrosine kinase and mitogen-activated protein kinase-dependent pathways. AIDS 2000; 14: 475–42.

    Google Scholar 

  69. Gu Y, Wu RF, Xu YC et al. HIV Tat activates c-Jun aminoterminal kinase through an oxidant-dependent mechanism. Virology 2001; 286: 62–71.

    Google Scholar 

  70. Zauli G, Previati M, Caramelli E et al. Exogenous human immunodeficiency virus type-1 Tat protein selectively stimulates a phosphatidylinositol-specific phospholipase C nuclear pathway in the Jurkat T cell line. Eur J Immunol 1995; 25: 2695–700.

    Google Scholar 

  71. Li X, Multon MC, Henin Y et al. Grb3–3 is up-regulated in HIV-1-infected T-cells and can potentiate cell activation through NFATc. J Biol Chem 2000; 275: 30925–33.

    Google Scholar 

  72. Kutsch O, Oh J, Nath A et al. Induction of the chemokines interleukin-8 and IP-10 by human immunodeficiency virus type 1 tat in astrocytes. J Virol 2000; 74: 9214–21.

    Google Scholar 

  73. Ganju RK, Munshi N, Nair BC et al. Human immunodeficiency virus tat modulates the Flk-1/KDR receptor,mitogen-ac tivated protein kinases,and components of focal adhesion in Kaposi's sarcoma cells. J Virol 1998; 72: 6131–7.

    Google Scholar 

  74. Zauli G, Gibellini D, Celeghini C et al. Pleiotropic effects of immobilized versus soluble recombinant HIV-1 Tat protein on CD3-mediated activation,induction of apoptosis,and HIV-1 long terminal repeat transactivation in purified CD4+ T lymphocytes. J Immunol 1996; 157: 2216–24.

    Google Scholar 

  75. Mischiati C, Pironi F, Milani D et al. Extracellular HIV-1 Tat protein differentially activates the JNK and ERK/MAPK pathways in CD4 T cells. AIDS 1999; 13: 1637–45.

    Google Scholar 

  76. Fiorelli V, Gendelman R, Samaniego F et al. Cytokines from activated T cells induce normal ECs to acquire the phenotypic and functional features of AIDS-Kaposi's sarcoma spindle cells. J Clin Invest 1995; 95: 1723–34.

    Google Scholar 

  77. Albini A, Fontanini G, Masiello L et al. Angiogenic potential in vivo by Kaposi's sarcoma cell-free supernatants and HIV-1 tat product: Inhibition of KS-like lesions by tissue inhibitor of metalloproteinase-2. AIDS 1994; 8: 1237–44.

    Google Scholar 

  78. Ensoli B, Gendelman R, Markham P et al. Synergy between basic fibroblast growth factor and HIV-1 Tat protein in induction of Kaposi's sarcoma. Nature 1994; 371: 674–80.

    Google Scholar 

  79. Albini A, Benelli R, Presta M et al. HIV-tat protein is a heparinbinding angiogenic growth factor. Oncogene 1996; 12: 289–97.

    Google Scholar 

  80. Iurlaro M, Benelli R, Masiello L et al. Beta Interferon inhibits HIV-1 Tat-induced angiogenesis: Synergism with 13-cis retinoic acid. Eur J Cancer 1998; 34: 570–6.

    Google Scholar 

  81. Jia H, Lohr M, Jezequel S et al. Cysteine-rich and basic domain HIV-1 Tat peptides inhibit angiogenesis and induce endothelial cell apoptosis. Biochem Biophys Res Commun 2001; 283: 469–79.

    Google Scholar 

  82. Cantaluppi V, Biancone L, Boccellino M et al. HIV type 1 Tat protein is a survival factor for Kaposi's sarcoma and ECs. AIDS Res Hum Retroviruses 2001; 17: 965–76.

    Google Scholar 

  83. Park IW, Ullrich CK, Schoenberger E et al. HIV-1 Tat induces microvascular endothelial apoptosis through caspase activation. J Immunol 2001; 167: 2766–71.

    Google Scholar 

  84. Liu W, Ahmad SA, Reinmuth N et al. Endothelial cell survival and apoptosis in the tumor vasculature. Apoptosis 2000; 5: 323–8.

    Google Scholar 

  85. Gonzalez-Amaro R, Sanchez-Madrid F. Cell adhesion molecules: Selectins and integrins. Crit Rev Immunol 1999; 19: 389–429.

    Google Scholar 

  86. McCloskey TW, Ott M, Tribble E et al. Dual role of HIV Tat in regulation of apoptosis in T cells. J Immunol 1997; 158: 1014–9.

    Google Scholar 

  87. Del Sorbo L, Arese M, Giraudo E et al. Tat-induced plateletactivating factor synthesis contributes to the angiogenic effect of HIV-1 Tat. Eur J Immunol 2001; 31: 376–83.

    Google Scholar 

  88. Albini A, Barillari G, Benelli R et al. Angiogenic properties of human immunodeficiency virus type 1 Tat protein. Proc Natl Acad Sci USA 1995; 92: 4838–42.

    Google Scholar 

  89. Toschi E, Barillari G, Sgadari C et al. Activation of matrixmetalloproteinase-2 and membrane-type-1-matrix-metalloproteinase in ECs and induction of vascular permeability in vivo by human immunodeficiency virus-1 Tat protein and basic fibroblast growth factor. Mol Biol Cell 2001; 12: 2934–46.

    Google Scholar 

  90. Hofman FM, Dohadwala MM, Wright AD et al. Exogenous tat protein activates central nervous system-derived ECs. J Neuroimmunol 1994; 54: 19–28.

    Google Scholar 

  91. Barillari G, Ensoli B. Angiogenic effects of extracellular human immunodeficiency virus type 1 tat protein and its role in the pathogenesis of AIDS-associated Kaposi's Sarcoma. Clin Microbiol Rev 2002; 15: 310–26.

    Google Scholar 

  92. Corallini A, Campioni D, Rossi C et al. Promotion of tumour metastases and induction of angiogenesis by native HIV-1 Tat protein from BK virus/tat transgenic mice. AIDS 1996; 10: 701–10.

    Google Scholar 

  93. Corallini A, Betti M, Rusnati M et al. Characterization of the effects of two polysulfonated distamycin A derivatives, PNU145156E and PNU153429,on HIV type 1 Tat protein. AIDS Res Hum Retroviruses 1998; 14: 1561–71.

    Google Scholar 

  94. Possati L, Campioni D, Sola F et al. Antiangiogenic,antitumoural and antimetastatic effects of two distamycin A derivatives with anti-HIV-1 Tat activity in a Kaposi's sarcoma-like murine model. Clin Exp Metastasis 1999; 17: 575–82.

    Google Scholar 

  95. Huber BE, Richards CA, Martin JL et al. Alterations in tumor angiogenesis associated with stable expression of the HIV tat gene. Mol Carcinog 1992; 5: 293–300.

    Google Scholar 

  96. Samaniego F, Markham PD, Gendelman R et al. Inflammatory cytokines induce ECs to produce and release basic fibroblast growth factor and to promote Kaposi's sarcoma-like lesions in nude mice. J Immunol 1997; 158: 1887–94.

    Google Scholar 

  97. Geier SA, Kronawitter U, Bogner JR et al. Impairment of colour contrast sensitivity and neuroretinal dysfunction in patients with 150 M. Rusnati & M. Presta symptomatic HIV infection or AIDS. Br J Ophthalmol 1993; 77: 716–20.

    Google Scholar 

  98. Obrams GI, Grufferman S. Epidemiology of HIV-associated non-Hodgkin lymphoma. Cancer Surv 1991; 10: 91–102.

    Google Scholar 

  99. Rabkin C and Blattner WA. HIV infection and cancers other than non Hodgkin's lymphoma and Kaposi's sarcoma. Cancer Surv 1991; 10: 151–60.

    Google Scholar 

  100. Ramendra KK, Sangiorgi F, Lan-Yng W et al. Expression of the human immunodeficiency virus-Tat gene in lymphoid tissues of transgenic mice is associated with B-cell lymphoma. Blood 1999; 94: 275–82.

    Google Scholar 

  101. Corallini A, Altavilla G, Pozzi L et al. Systemic expression of HIV-1 tat gene in transgenic mice induces endothelial proliferation and tumors of different histotypes. Cancer Res 1993; 53: 5569–75.

    Google Scholar 

  102. Vogel J, Hinrichs SH, Reynolds RK et al. The HIV tat gene induces dermal lesions resembling Kaposi's sarcoma in transgenic mice. Nature 1988; 335: 606–11.

    Google Scholar 

  103. Prakash O, Tang ZY, He YE et al. Human Kaposi's sarcoma cellmediated tumorigenesis in human immunodeficiency type 1 tatexpressing transgenic mice. J Natl Cancer Inst 2000; 92: 721–8.

    Google Scholar 

  104. Weiss R, Boshoff C. Addressing controversies over Kaposi's sarcoma. J Natl Cancer Inst 2000; 92: 677–9.

    Google Scholar 

  105. Barillari G, Buonaguro L, Fiorelli V et al. Effects of cytokines from activated immune cells on vascular cell growth and HIV-1 gene expression. Implications for AIDS-Kaposi's sarcoma pathogenesis. J Immunol 1992; 149: 3727–34.

    Google Scholar 

  106. Regezi JA, MacPhail LA, Daniels TE et al. Human immunode-ficiency virus-associated oral Kaposi's sarcoma. A heterogeneous cell population dominated by spindle-shaped ECs. Am J Pathol 1993; 143: 240–9.

    Google Scholar 

  107. Uccini S, Sirianni MC, Vincenzi L et al. Kaposi's sarcoma cells express the macrophage-associated antigen mannose receptor and develop in peripheral blood cultures of Kaposi's sarcoma patients. Am J Pathol 1997; 150: 929–38.

    Google Scholar 

  108. Moses AV, Fish KN, Ruhl R et al. Long-term infection and transformation of dermal microvascular ECs by human herpesvirus 8. J. Virol 1999; 73: 6892–902.

    Google Scholar 

  109. Maruo N, Morita I, Shirao M et al. IL-6 increases endothelial permeability in vitro. Endocrinology 1992; 131: 710–4.

    Google Scholar 

  110. Chirivi RG, Taraboletti G, Bani MR et al. Human immunode-ficiency virus-1 (HIV-1)-Tat protein promotes migration of acquired immunodeficiency syndrome-related lymphoma cells and enhances their adhesion to ECs. Blood 1999; 94: 1747–54.

    Google Scholar 

  111. Hofman FM, Wright AD, Dohadwala MM et al. Exogenous tat protein activates human ECs. Blood 1993; 82: 2774–80.

    Google Scholar 

  112. Fiorelli V, Gendelman R, Sirianni MC et al. gamma-Interferon produced by CD8+ T cells infiltrating Kaposi's sarcoma induces spindle cells with angiogenic phenotype and synergy with human immunodeficiency virus-1 Tat protein: An immune response to human herpesvirus-8 infection? Blood 1998; 91: 956–97.

    Google Scholar 

  113. Hofman FM, Chen P, Incardona F et al. HIV-1 tat protein induces the production of interleukin-8 by human brain-derived ECs. J Neuroimmunol 1999; 94: 28–39.

    Google Scholar 

  114. Camussi G, Montrucchio G, Lupia E et al. Angiogenesis induced in vivo by hepatocyte growth factor is mediated by plateletactivating factor synthesis from macrophages. J Immunol 1997; 158: 1302–9.

    Google Scholar 

  115. Montrucchio G, Lupia E, Battaglia E et al. Platelet-activating factor enhances vascular endothelial growth factor-induced endothelial cell motility and neoangiogenesis in a murine matrigel model. Arterioscler Thromb Vasc Biol 2000; 20: 80–8.

    Google Scholar 

  116. Fan J, Bass HZ, Fahey JL. Elevated IFN-gamma and decreased IL-2 gene expression are associated with HIV infection. J Immunol 1993; 151: 5031–40.

    Google Scholar 

  117. Maruyama K, Mori Y, Murasawa S et al. Interleukin-1 beta upregulates cardiac expression of vascular endothelial growth factor and its receptor KDR/flk-1 via activation of protein tyrosine kinases. J Mol Cell Cardiol 1999; 31: 607–17.

    Google Scholar 

  118. Lafrenie RM, Podor TJ, Buchanan MR et al. Up-regulated biosynthesis and expression of endothelial cell vitronectin receptor enhances cancer cell adhesion. Cancer Res 1992; 52: 2202–8.

    Google Scholar 

  119. Marchisone C, Benelli R, Albini A et al. Inhibition of angiogenesis by type I interferons in models of Kaposi's sarcoma. Int J Biol Markers 1999; 14: 257–62.

    Google Scholar 

  120. Minami T, Rosenberg RD, Aird WC. Transforming growth factor-beta 1-mediated inhibition of the flk-1/KDR gene is mediated by a 5¢-untranslated region palindromic GATA site. J Biol Chem 2001; 276: 5395–402.

    Google Scholar 

  121. Borghi MO, Panzeri P, Shattock R et al. Interaction between chronically HIV-infected promonocytic cells and human umbilical vein ECs: Role of proinflammatory cytokines and chemokines in viral expression modulation. Clin Exp Immunol 2000; 120: 93–100.

    Google Scholar 

  122. Fan ST, Hsia K, Edgington TS. Upregulation of human immunodeficiency virus-1 in chronically infected monocytic cell line by both contact with ECs and cytokines. Blood 1994; 84: 1567–72.

    Google Scholar 

  123. Chen P, Mayne M, Power C et al. The Tat protein of HIV-1 induces tumor necrosis factor-alpha production. Implications for HIV-1-associated neurological diseases. J Biol Chem 1997; 272: 22385–8.

    Google Scholar 

  124. Sastry KJ, Reddy HR, Pandita R et al. HIV-1 tat gene induces tumor necrosis factor-beta (lymphotoxin) in a human B-lymphoblastoid cell line. J Biol Chem 1990; 265: 20091–3.

    Google Scholar 

  125. Nath A, Conant K, Chen P et al. Transient exposure to HIV-1 Tat protein results in cytokine production in macrophages and astrocytes. A hit and run phenomenon. J Biol Chem 1999; 274: 17098–102.

    Google Scholar 

  126. Rusnati M, Urbinati C, Tanghetti E et al. Cell membrane GM1 ganglioside is a functional coreceptor for fibroblast growth factor 2. Proc Natl Acad Sci USA 2002; 99: 4367–72.

    Google Scholar 

  127. Soldi R, Mitola S, Strasly M et al. Role of alphavbeta3 integrin in the activation of vascular endothelial growth factor receptor-2. EMBO J 1999; 18: 882–92.

    Google Scholar 

  128. Rusnati M, Coltrini D, Campioni D et al. Upregulation of urokinase-type plasminogen activator by endogenous and exogenous HIV-1 Tat protein in tumour cell lines derived from BK virus/tat-transgenic mice. AIDS 1997; 11: 727–36.

    Google Scholar 

  129. Morini M, Benelli R, Giunciuglio D et al. Kaposi's sarcoma cells of different etiologic origins respond to HIV-Tat through the Flk-1/KDR (VEGFR-2): Relevance in AIDS-KS pathology. Biochem Biophys Res Commun 2000; 273: 267–71.

    Google Scholar 

  130. Deregibus MC, Cantaluppi V, Doublier S et al. HIV-1-Tat protein activates phosphatidylinositol 3-kinase/AKT-dependent survival pathways in Kaposi's sarcoma cells. J Biol Chem 2002; 277: 25195–202.

    Google Scholar 

  131. Kelly GD, Ensoli B, Gunthel CJ et al. Purified Tat induces inflammatory response genes in Kaposi's sarcoma cells. AIDS 1998; 12: 1753–61.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Rusnati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rusnati, M., Presta, M. HIV-1 Tat protein and endothelium: From protein/cell interaction to AIDS-associated pathologies. Angiogenesis 5, 141–151 (2002). https://doi.org/10.1023/A:1023892223074

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023892223074

Navigation