Skip to main content
Log in

Pressure Effects on Submicrosecond Phospholipid Dynamics Using a Long-Lived Fluorescence Probe

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The effects of applied external hydrostatic pressure on submicrosecond lipid motions in DPPC4 bilayers have been examined using coronene (a long-lived planar fluorescent molecule) and DPH. Steady-state fluorescence emission anisotropy (EA) values (<r>) obtained for probe-labeled DPPC SUVs measured at different fixed temperatures above T c as a function of increasing hydrostatic pressure reveal pressure-induced lipid phase transition profiles. For coronene-labeled samples, the observed lipid “melt” profiles are broad and shifted to higher midpoint EA pressure values (P 1/2) compared with corresponding DPH-labeled SUVs at the same temperature. The data suggest lipid motions occurring on the submicrosecond time scale, detected only by using a long-lived fluorescence probe, which occur well above the normally reported “fluid–gel” lipid phase transition. Slopes of the pressure-to-temperature equivalence plots (dP 1/2/dT = 39 bar/K) obtained for DPH-or coronene-labeled DPPC SUVs are identical within experimental error and reflect probe independence. For DPH, the slope of the P 1/2(T) plot provides the expected phase transition phospholipid volume change. However, intercept values (at P 1/2 = 1 bar) or apparent phase transition temperatures obtained from the equivalence plots for the two probes are not equal. Differences appear to arise due to the very disparate fluorescence lifetime values of the two probes, which result in rotational sensitivity of coronene to gel lipid volume fluctuations occurring during the extended time window provided by coronene fluorescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. W. M. Rietveld and S. T. Ferreira (1996) Biochemistry 35, 7743–7751.

    Google Scholar 

  2. S. Dallet and M.-D. Legoy (1996) Biochim. Biophys. Acta 1294, 15–24.

    Google Scholar 

  3. J. L. Silva (1993) Annu. Rev. Phys. Chem. 44, 89–113.

    Google Scholar 

  4. L. Erijman, A. A. Paladini, G. H. Lorimer, and G. Weber (1993) J. Biol. Chem. 268, 25914–25919.

    Google Scholar 

  5. P. L.-G. Chong and G. Weber (1983) Biochemistry 22, 5544–5550.

    Google Scholar 

  6. P. L.-G. Chong, B. W. van der Meer, and T. E. Thompson (1985) Biochim. Biophys. Acta 813, 253–265.

    Google Scholar 

  7. M. Sassaroli, M. Vauhkonen, P. Somerharju, and S. Scarlata (1993) Biophys. J. 64, 137–149.

    Google Scholar 

  8. C. R. Mateo, P. Tauc, and J.-C. Brochon, (1993) Biophys. J. 65, 2248–2260.

    Google Scholar 

  9. L. Davenport and P. Targowski (1996) Biophys. J. 71, 1837–1852.

    Google Scholar 

  10. L. Davenport, J. R. Knutson, and L. Brand (1986) Biochemistry 25, 1811–1816.

    Google Scholar 

  11. L. A. Chen, R. E. Dale, S. Roth, and L. Brand (1977) J. Biol. Chem. 252, 7500–7510.

    Google Scholar 

  12. L. Davenport (1997) in L. Brand and M. L. Johnson (Eds), Methods in Enzymology, Vol. 278, Academic Press, New York, pp. 487–512.

    Google Scholar 

  13. C. W. F. McClare (1971) Anal. Biochem. 39, 527–530.

    Google Scholar 

  14. A. A. Paladini and G. Weber (1981) Rev. Sci. Instrum. 52, 419–429.

    Google Scholar 

  15. P. Targowski and L. Davenport (1998) Analytical Biochemistry, submitted for publication.

  16. R. F. Chen and R. L. Bowman (1963) Science 147, 729–732.

    Google Scholar 

  17. B. R. Lentz, Y. Barenholz, and T. E. Thompson (1976) Biochemistry 15, 4529–4537.

    Google Scholar 

  18. S. Fischkoff and J. M. Vanderkooi (1975) J. Gen. Physiol. 65, 663–676.

    Google Scholar 

  19. A. K. Tan and R. Ramsey (1993) Biochemistry 32, 2137–2143.

    Google Scholar 

  20. L. Davenport, J. R. Knutson, and L. Brand, (1986) Biochemistry 25, 1811–1816.

    Google Scholar 

  21. L. Davenport and P. Targowski (1995) J. Fluoresc. 5, 9–18.

    Google Scholar 

  22. L. Davenport, J. Z. Wang, and J. R. Knutson (1989) in A. Butterfield (Ed.), Biological and Synthetic Membranes, Alan R. Liss, New York, pp. 97–106.

    Google Scholar 

  23. J. F. Nagle and J. L. Scott, Jr. (1978) Biochim. Biophys. Acta 513, 236–243.

    Google Scholar 

  24. D. Hoekstra (1982) Biochemistry 21, 2833–2840.

    Google Scholar 

  25. N.-I. Liu and R. L. Kay (1977) Biochemistry 16, 3484–3486.

    Google Scholar 

  26. S. Mabrey and J. M. Sturtevant (1976) Proc. Natl. Acad. Sci. USA 73, 3862–3866.

    Google Scholar 

  27. B. DeKruiff, R. A. Demel, A. J. Slotboom, L. L. M. VanDeenen, and A. F. Rosenthal (1973) Biochim. Biophys. Acta 307, 1–19.

    Google Scholar 

  28. L. Davenport, P. Targowski, and J. R. Knutson (1995) Biophys. J. 68, A303.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Targowski, P., Davenport, L. Pressure Effects on Submicrosecond Phospholipid Dynamics Using a Long-Lived Fluorescence Probe. Journal of Fluorescence 8, 121–128 (1998). https://doi.org/10.1023/A:1022594224866

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022594224866

Navigation