Skip to main content
Log in

Strategies for Correcting the AF508 CFTR Protein-Folding Defect

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Many human diseases arise as a result of mutations within genes encoding essential proteins. In many cases, the mutations are not so severe as to render the protein biologically inactive. Rather, the mutations oftentimes result in only subtle protein-folding abnormalities. In the case of the CFTR protein, a mutation leading to the loss of a single amino acid is responsible for the diseased state in the majority of individuals with cystic fibrosis. Here the newly synthesized mutant CFTR protein, missing a phenylalanine residue at position 508 (ΔF508 CFTR), is unable to transit from the endoplasmic reticulum to the plasma membrane, where it functions as a regulator of chloride transport. All of the available evidence indicate that the newly synthesized ΔF508 CFTR protein adopts a slightly altered conformation and therefore is retained at the level of the endoplasmic reticulum, ostensibly by the actions of the cellular quality control system. Because the mutant protein is capable of functioning as a chloride channel, developing ways to elicit its release out of the ER and to the plasma membrane has important clinical implications. Herein, we discuss our recent studies showing that the protein folding defect associated with the ΔF508 CFTR mutation, as well as a number of other temperature-sensitive mutations, can be overcome by strategies designed to influence protein folding inside the cell. Specifically we show that a number of low-molecular-weight compounds, all of which are known to stabilize proteins in their native conformation, are effective in rescuing the folding and/or processing defects associated with different mutations that oftentimes lead to human disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Alton, E. W., Middleton, P. G., Caplan, N. J., Smith, S. N., Steel, D. M., Munkonge, F. M., Jeffery, P. K., Geddes, D. M., Hart, S. L., Williamson, R., Fasold, K. I., Miller, A. DI, Dickinson, P., Stevenson, B. J., McLachlan, G., Dorin, J. R., and Porteous, D. J. (1993). Nature Genet. 5, 135–142.

    Google Scholar 

  • Amara J. F., Cheng, S. H., and Smith, A. E. (1992). Trends Cell Biol. 2, 145–149.

    Google Scholar 

  • Back, J. F., Oakenfull, D., and Smith, M. B. (1979). Biochemistry 18, 5191–5199.

    Google Scholar 

  • Bear, C. E., Jensen, T. J., and Riordan, J. R. (1992). Biophys. J. A127.

  • Becq, F., Jensen, T. J., Chang, X. B., Savoia, A., Rommens, J. M., Tsui, L. C., Buchwald, M., Riordan, J. R., and Hanrahan, J. W. (1994). Proc. Natl. Acad. Sci. 91, 9160–9164.

    Google Scholar 

  • Becq, F., B. Verrier, X. B. Chang, J. R. Riordan and J. W. Hanrahan. (1996). J. Biol. Chem. 271, 16171–16179.

    Google Scholar 

  • Brown, C. R., Hong-Brown, L. Q., Biwersi, J., Verkman, A. S., and Welch, W. J. (1996). Cell Stress Chap. 1, 117–125.

    Google Scholar 

  • Brown, C. R., Hong-Brown, L. Q., and Welch, W. J. (1997). J. Clin. Invest., 99, 1432–1444.

    Google Scholar 

  • Burg, M. B. (1995). Am. J. Physiol. 268, F983–F996.

    Google Scholar 

  • Bychkova V. E., and Ptitsyn, O. B. (1995). FEBS Let. 359, 6–8.

    Google Scholar 

  • Caplan, N. J., Alton, E. W., Middleton, P. G., Dorin, J. R., Stevenson, B. J., Gao, X., Durham, S. R., Jeffery, P. K., Hodson, M. E., Coutelle, C., Huang, L., Porteous, D. J., Williamson, R., and Geddes, D. M. (1995). Nature Med. 1, 39–46.

    Google Scholar 

  • Cheng, S. H., Gregory, R. J., Marshall, J., Paul, S., Souza, D. W., White, G. A., O'Riordan, C. R., and Smith, A. E. (1990). Cell 63, 827–834.

    Google Scholar 

  • Cheng, S. H., Fang, S. L., Zabner, J., Marshall, J., Piraino, S., Schiavi, S. C., Jefferson, D. M., Welsh, M. J., and Smith, A. E. (1995). Am. J. Physiol. 268, L615–L624.

    Google Scholar 

  • Chowdary, D. R., Dermody, J. J., Jha, K. K., and Ozer, H. L. (1994). Mol. Cell. Biol. 14, 1997–2003.

    Google Scholar 

  • Denning, G. M., Anderson, M. P., Amara, J. F., Marshallo, J., Smith, A. E., and Welsh, M. J. (1992). Nature 358, 761–764.

    Google Scholar 

  • Drumm, M. L., Wilkinson, D. S., Smit, L. S., Worrell, R. T., and Strong, T. V., Frizzell, R. A., Dawson, D. C., and Collins, F. S. (1991). Science 254, 1797–1799.

    Google Scholar 

  • Edington, B. V., Whelan, S. A., and Hightower, L. E. (1989). J. Cell. Physiol. 139, 219–228.

    Google Scholar 

  • Eidelman, O., Guay-Broder, C., van Galen, P. J. M., Jacobson, K., Fox, C., Turner, R. J., Cabantchik, Z. I., and Pollard, H. B. (1992). Proc. Natl. Acad. Sci. USA 89, 5562–5566.

    Google Scholar 

  • Garcia-Perez, A., and Burg, M. B. (1991). Physiol. Rev. 71, 1081–1115.

    Google Scholar 

  • Germsla, S. Y., and Stuur, E. R. (1972). Int. J. Pept. Protein Res. 4, 372–378.

    Google Scholar 

  • Gekko, K., and Koga, S. (1983). J. Biochem. 94, 199–208.

    Google Scholar 

  • Gekko, K., and Timasheff, S. N. (1981a). Biochemistry 20, 4667–4676.

    Google Scholar 

  • Gekko, K. and Timasheff, S. N. (1981b). Biochemistry 20, 4677–4686.

    Google Scholar 

  • Guay-Broder, C., Jacobson, K. A., Barnoy, S. Cabantchik, Z. I., Guggino, W. B., Zeitlin, P. L., Turner, R. J., Vergara, L., Eidelman, O., and Pollard, H. B. (1995). Biochemistry 34, 9079–9087.

    Google Scholar 

  • Hamosh, A., Trapnelllll, B. C., Zeitlin, P. L., Montrose-Rafizadeh, C., Rosenstein, B. I., Crystal, R. G., and Cutting, G. R. (1991). J. Clin. Invest. 88, 1880–1885.

    Google Scholar 

  • Henle, K. J., Peck, J. W., and Higashikubo, R. (1983). Cancer Res. 43, 1624–1633.

    Google Scholar 

  • Hawthorne, D. C., and Friss, J. (1964). Genetics 50, 829–839.

    Google Scholar 

  • Howard, M., Frizzell, R. A., and Bedwell, D. M. (1996). Nature Med. 2, 467–469.

    Google Scholar 

  • Illek, B., Fisher, H., and Machen, T. E. (1996). Am J. Physiol. 270, C265–275.

    Google Scholar 

  • Jacobson, K. A., Guay-Broder, C. van Galen, P. J. M., Rodrigues, C., Melman, N., Jacobson, M. A., Eidelman, O., and Pollard, H. (1995). Biochemistry 34, 9088–9094.

    Google Scholar 

  • Kelley, T. J., Al-Nakkash, L., Cotton, C. U., and Drumm, M. L. (1996). J. Clin. Invest. 98, 513–520.

    Google Scholar 

  • Kerem, B. S., Rommens, J. M., Buchanan, J. A., Markiewicz, D., Cox, T. K., Chakravarti, A., Buchwald, M., and Tsui, L. C. (1989). Science 245, 1073–1080.

    Google Scholar 

  • Kottgen, M., Busch, A. E., Hug, M. J., Greger, R., and Kunzelmann, K. (1996). Pflug. Arch. Eur. J. Physiol. 431, 549–555.

    Google Scholar 

  • Lee, E. R., Marshall, J., Siegel, C. S., Jiang, C., Yew, N. S., Nichols, M. R., Nietupski, J. B., Ziegler, R. J., Lane M. B., Wang, K. X., Wan, N. C., Scheule, R. K., Harris, D. J., Smith, A. E., and Cheng, S. H. (1996). Hum. Gene Ther. 7, 1701–1717.

    Google Scholar 

  • Li, C., Ramjeesingh, M., Reyea, E., Jensen, T., Chang, X., Rommens, J. M., and Bear, C. E. (1993). Nature Genet. 3, 311–316.

    Google Scholar 

  • Lin, P. S., Kwock, L., and Hefter, K. (1981). J. Cell. Physiol. 108, 439–448.

    Google Scholar 

  • Martinez, J., Georgoff, I., Martinez, J., and Levine, A. J. (1991). Genes Dev. 5, 151–159.

    Google Scholar 

  • Pind, S., Riordan, J. R., and Williams, D. B. (1994). J. Biol. Chem. 269, 12784–12788.

    Google Scholar 

  • Riordan, J. R., Rommens, J. M., Keren, B. S., Alon, N., Rozmahel, R., Grzelczak, Z., Zielenski, J., Lok, S., Plavsic, N., Chou, J. L., Drumm, M. L., Iannuzzi, M. C., Collins, F. S., and Tsui, L. C. (1989). Science 245, 1066–1073.

    Google Scholar 

  • Rommens, J. M., Iannuzzi, M. C., Kerem, B. S., Drumm, M. L., Melmer, G., Dean, M., Rozmahel, R., Cole, J. L., Kennedy, D., Hidaka, N., Zsiza, M., Buchwald, M., Riordan, J. R., Tsui, L. C., and Collins, F. S. (1989). Science 245, 1059–1065.

    Google Scholar 

  • Sato, S., Ward, C. L., Krouse, M. E., Wine, J. J., and Kopito, R. R. (1996). J. Biol. Chem. 271, 635–638.

    Google Scholar 

  • Schein, C. H. (1990). Bio/Technol. 8, 308–316.

    Google Scholar 

  • Somero, G. (1986). Am. J. Physiol. 251, R197–R213.

    Google Scholar 

  • Thomas, P. J., Qu, B. H., and Pedersen, P. L. (1995). Trends Biochem. Sci. 20, 456–459.

    Google Scholar 

  • Tatzelt, J., Pruisner, S., and Welch, W. J. (1996). EMBO J. 15, 6363–6373.

    Google Scholar 

  • Welch, W. J., and Brown, C. R. (1996). Cell Stress Chap. 1, 109–115.

    Google Scholar 

  • Welsh, M. J., and Smith, A. E. (1993). Cell 13, 1251–1254.

    Google Scholar 

  • Yancey, P. H., Clark, M. E., Hand, S. C., Bowlus, R. D., and Somero, G. N. (1982). Science 217, 1214–1222.

    Google Scholar 

  • Yang, Y., Janich, S., Cohn, J. A., and Wilson, J. M. (1993). Proc. Natl. Acad. Sci. USA 90, 9480–9484.

    Google Scholar 

  • Zabner, J. B., Ramsey, W., Meeker, D. P., Aitken, M. L., Balfour, R. P., Gibson, R. L., Launspach, J., Moscicki, R. A., Richards, S. M., Standaert, T. A., Williams-Warren, J., Wadsworth, S. C., Smith, A. E., and Welsh, M. J. (1996). J. Clin. Invest. 97, 1504–1511.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, C.R., Hong-Brown, L.Q. & Welch, W.J. Strategies for Correcting the AF508 CFTR Protein-Folding Defect. J Bioenerg Biomembr 29, 491–502 (1997). https://doi.org/10.1023/A:1022491124939

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022491124939

Navigation