Skip to main content
Log in

Characterisation and properties of the inclusion complex of 24-epibrassinolide with β-cyclodextrin

  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

This paper reports the first study of an inclusion complex of abrassinosteroid with β-cyclodextrin. The formation of inclusion complexesbetween 24-epibrassinolide and β-cyclodextrin was confirmed by theirphysicochemical properties and the compounds were analysed by differentialscanning calorimetry, powder X-ray diffraction, nuclear magnetic resonancespectrometry and scanning electron microscopy. Theoretical calculations usingthe MM+ HyperChem force field showed a preference for inclusion of thesidechain of the epibrassinolide molecule into the β-cyclodextrin cavity toform a 1:1 inclusion complex, although complexes involving inclusion ofthe steroidal nucleus also possess a favourable interaction energy. Rice laminainclination assay, employing IAC-103 and IAC-104 cultivars, showed an improvedactivity for the epibrassinolide-cyclodextrin complex compared to theepibrassinolide itself. The results suggest that brassinosteroid complexationwith cyclodextrins may enhance the biological activity of these plant growthregulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed S.M. 1998. Improvement of solubility and dissolution of 19-norprogesterone via inclusion complexation. J. Inclusion Phenom. Mol. Rec. Chem. 30: 111–125.

    Google Scholar 

  • Alberts E. and Muller B.W. 1992. Complexation of steroid-hormones with cyclodextrin derivatives. Substituent effects of the guest molecule on solubility and stability in aqueous-solution. J. Pharm. Sci. 81: 756–761.

    Google Scholar 

  • Braun P. and Wild A. 1984. The influence of brassinosteroids on growth and parameters of photosynthesis of wheat and mustard plants. J. Plant Physiol. 116: 189–196.

    Google Scholar 

  • Brutti C., Apostolo N.M., Ferrerotti S.A., Llorente B.E. and Krymkiewicz N. 2000. Micropropagation of Cynara scolymus L. employing cyclodextrins to promote rhizogenesis. Sci. Hortic. 83: 1–10.

    Google Scholar 

  • Clouse S.D. and Sasse J.M. 1998. Brassinosteroids: essential regulators of plant growth and development. Annual Rev. Plant Physiol. Plant Molec. Biol. 49: 427–451.

    Google Scholar 

  • Connors A. 1997. The stability of cyclodextrin complexes in solution. Chem. Rev. 97: 1325–1357.

    Google Scholar 

  • Cutler H.G., Yokota T. and Adam G. (eds) 1991. Brassinosteroids: Chemistry, Bioactivity and Applications. ACS Symposium Series 474. American Chemical Society, Washington, DC.

  • De Azevedo M.B.A., Alderete J.B., Lino A.C.S., Loh W., Faljoni-Alario A. and Durán N. 2000. Violacein/β-cyclodextrin inclusion complex formation studied by measurements of diffusion coefficient and circular dichroism. J. Incl. Phenom. Macrocyclic Chem. 37: 67–74.

    Google Scholar 

  • De Azevedo M.B.M., Alderete J., Zullo M.A.T., Salva T.J.G. and Duran N. 2000. Brassinosteroids: a new class of plant hormones. The biological activity of 24-epibrassinolide and an inclusion complex of 24-epibrassinolide and β-cyclodextrin. Proceed. Int'l. Control. Rel. Bioact. Mater. Controlled Release Society, Inc.: 5006–5007.

  • Durán N., De Azevedo M.B.M., Zullo M.A.T., Salva T.J.G. and Alderete J.B. 2000. Process of cyclodextrin/brassinosteroids formulation, for agricultural application, used as plant hormones, Brazilian Patent BR9906202-A.

  • Durzan D.J. and Ventimiglia F.F. 2000. Cyclodextrin nutrients in plant tissue cultures, US Patent US 6087176 [Chem. Abstr. 133: 88976 (2000)].

  • Fujioka S., Noguchi T., Takatsuto S. and Yoshida S. 1998. Activity of brassinosteroids in the dwarf rice lamina inclination bioassay. Phytochemistry 49: 1841–1848.

    Google Scholar 

  • Fujioka S. and Sakurai A. 1997. Biosynthesis and metabolism of brassinosteroids. Physiol. Plant. 100: 710–715.

    Google Scholar 

  • Gosset S. and Gauvrit C. 1992. Activity enhancement of benzamide herbicides by cyclodextrins. French 9222204 A1 [Chem. Abstr. 118: 75387 (1997)].

    Google Scholar 

  • Hayashi T., Iijima Y., Hoshino A. and Nakamura M. 1998. Agents and method for flowering acceleration using cinnamic acid-cyclodextrin inclusion compounds Japanese Patent. Kokai Tokkyo Koho JP 10273404 A2 [Chem. Abstr. 129: 327304 (1999)].

    Google Scholar 

  • Huet H. and Jullien M. 1992. The β-cyclodextrins delay the germination of the somatic embryos of carrot (Daucus carota L.). Acad. Sci., Ser. III 314: 171–177.

    Google Scholar 

  • Ikekawa N. and Zhao Y. 1991. Application of 24-epibrassinolide in agriculture. In: Cutler H.G., Yokota T. and Adam G. (eds), Brassinosteroids: Chemistry, Bioactivity and Applications. ACS Symposium Series 474. American Chemical Society, Washington, DC, pp. 280–305.

    Google Scholar 

  • Kalinch F.N., Mandava N.B. and Todhunter J.A. 1985. Relationship of nucleic acid metabolism to brassinolide-induced responses in bean. J. Plant Physiol. 120: 207–214.

    Google Scholar 

  • Khripach V.A., Zhabinskii V.N. and De Groot A.E. 1999. Brassinosteroids, a new class of plant hormones. Academic Press, Harcourt Brace &; Company, USA.

    Google Scholar 

  • Koehler G., Grabner G., Klein C.T.H., Marconi G., Mayer B., Monti S. et al. 1996. Structure spectroscopic properties of cyclodextrin inclusion complexes. J. Inc. Phenom. Mol. Rec. Chem. 25: 103–108.

    Google Scholar 

  • Lipkowitz K.B. 1998. Applications of computational chemistry to the study of cyclodextrins. Chem. Rev. 98: 1829–1873.

    Google Scholar 

  • Mandava N.B. 1988. Plant growth promoting brassinosteroids. Ann. Rev. Plant Physiol. Plant Mol. Biol. 39: 23–52.

    Google Scholar 

  • Marquart V. and Adam G. 1991. Recent advances in brassinosteroids research. In: Ebing W. (ed.), Chemistry of Plant Protection, Herbicide Resistance-Brassinosteroids, Gibberellins, Plant Growth Regulators. Vol. 7. Springer-Verlag, Berlin, pp. 104–139.

    Google Scholar 

  • Marzona M., Carpignano R. and Quagliotto P. 1992. Quantitative structure-stability relationships in the inclusion complexes of steroids with cyclodextrins. Annal. Di Chim. 82: 517–537.

    Google Scholar 

  • Okii M. 1993. Cyclodextrins for enhanced callus tissue culture of rice Japanese Patent. Kokai Tokkyo Koho JP 05292955 A2 [Chem. Abstr. 120: 1324504 (1997)].

    Google Scholar 

  • Rajagopalan N., Chen S.C. and Chow W.S. 1986. A study of the inclusion complex of amphotericin-B with cyclodextrin. Int. J. Pharm. 29: 161–168.

    Google Scholar 

  • Sairam P.K. 1994. Effect of homobrassinolide application on plant metabolism and grain yield under irrigated and moisture stress conditions of two wheat varieties. Plant Growth Regul. 14: 173–181.

    Google Scholar 

  • Sakurai A. and Fujioka S. 1993. The current status of physiology and biochemistry of brassinosteroids. Plant Growth Regul. 13: 147–159.

    Google Scholar 

  • Sasse J.M. 1997. Recent progress in brassinosteroid research. Physiol. Plant. 100: 696–701.

    Google Scholar 

  • Sawamoto T. 2000. Plant growth-stimulating and disease-preventing agents containing 1-triacontanol and their manufacture Japanese Patent 2000128707 A2 [Chem. Abstr. 132: 304657].

    Google Scholar 

  • Stella V.J. and Rajewski R.A. 1997. Cyclodextrins: their future in drug formulation and delivery. Pharm. Res. 14: 556–567.

    Google Scholar 

  • Stella V.J., Rao V.M., Zannou E.A. and Zia V. 1999. Mechanisms of drug release from cyclodextrin complexes. Adv. Drugs Del. Rev. 36: 3–16.

    Google Scholar 

  • Szejtli J., Szente L., Harshegyi J., Daroczi I., Vorashazy L. and Torok S. 1989. Inclusion complexes and mixtures of plant growth regulators with cyclodextrins., Hung. Patent Teljes HU 47961 A2 [Chemical Abstracts 112: 50398 (1997)].

    Google Scholar 

  • Takeno K. and Pharis R.P. 1982. Brassinosteroid-induced bending of the leaf lamina of dwarf rice seedlings: an auxin-mediated phenomenon. Plant Cell Physiol. 23: 1275–1281.

    Google Scholar 

  • Uden W.V. and Woerdenbag H.J. 1994. Cyclodextrins as a useful tool for bioconversions in plant cell biotechnology. Plant Cell Tissue Organ Cult. 38: 103–113.

    Google Scholar 

  • Vardhini B.V. and Rao S.S.R. 1999. Effect of brassinosteroids on nodulation and nitrogenase activity in groundnut Arachis hypogaea L. Phytochemistry 48: 927–930.

    Google Scholar 

  • Wada K., Marumo S., Abe H., Morishita T., Nakamura K., Uchiyama M. et al. 1984. A rice lamina inclination test-a micro-quantitative bioassay for brassinosteroids. Agric. Biol. Chem. 48: 719–726.

    Google Scholar 

  • Wada K., Marumo S., Ikekawa N., Morisaki M. and Mori K. 1981. Brassinolide and homobrassinolide promotion of lamina inclination of rice seedlings. Plant Cell Physiol. 22: 323–326.

    Google Scholar 

  • Zhou D., Wu Y., Xu Q., Yang L., Bai C. and Tan Z. 2000. Molecular mechanics study of the inclusion of trimethylbenzene isomers in α-cyclodextrin. J. Inc. Phenom. Macrocyclic Chem. 37: 273–279.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Azevedo, M., Zullo, M., Alderete, J. et al. Characterisation and properties of the inclusion complex of 24-epibrassinolide with β-cyclodextrin. Plant Growth Regulation 37, 233–240 (2002). https://doi.org/10.1023/A:1020842727497

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020842727497

Navigation