Skip to main content
Log in

Decreased Phosphorylation of GAP-43/B-50 in Striatal Synaptic Plasma Membranes after Circling Motor Activity

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The effects of spontaneous circling motor activity on the in vitro phosphorylation of the protein kinase C substrate GAP-43/B-50 was studied on striatal membranes of developing rats (30 days of age). At this time of postnatal development, permanent plastic changes in cholinergic and dopaminergic systems are produced by physiological motor activity. Exercised animals showed a significant reduction of 31% in the level of GAP-43/B-50 endogenous phosphorylation in the contralateral striatum respect to the ipsilateral side (P < 0.01), while control animals did not show asymmetric differences. Compared to controls, the contralateral striatum of exercised animals showed a 33% reduction in the incorporation of 32P-phosphate into GAP-43/B-50 30 minutes post-exercise (P < 0.01). This change in GAP-43/B-50 phosphorylation was correlated with the running speed developed by the animals (r:0.8986, P = 0.015). GAP-43/B-50 immunoblots revealed no changes in the amount of this protein in any group. Moreover, a significant variation of 25% (P < 0.05) in the PKC activity was seen between both exercised striata. Interhemispheric differences were not found in control animals. We conclude that endogenous phosphorylation of this protein is also altered by motor activity in the same period that permanent changes in striatal neuroreceptors are triggered after motor training.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Gerfen, C. R. 1992. The neostriatal mosaic: Multiple levels of compartmental organization. Trends Neurosci. 15:133-139.

    PubMed  Google Scholar 

  2. Gerfen, C. R. 1992. The neostriatal mosaic: Multiple levels of compartmental organization in the basal ganglia. T Annu. Rev. Neurosci. 15:285-320.

    Google Scholar 

  3. Worley, P. F., Baraban, J. M., De Souza, E. B., and Snyder S. H. 1986. Mapping second messenger in the brain: Differential localizations of adenylate cyclase and protein kinase C. Proc. Natl. Acad. Sci. USA. 83:4053-4057.

    PubMed  Google Scholar 

  4. Fordyce, D. E., and Farrar, R. P. 1991. Physical activity effects on hippocampal and parietal cortical cholinergic functions and spatial learning in F344 rats. Behav Brain Res. 43:115-123.

    PubMed  Google Scholar 

  5. Mc Rae, P. G., Spidurso, W. W., Walters, T. J., Farrar, R. P., and Wilcox, R. E. 1987. Endurance training effects on striatal D2 dopamine receptor binding and striatal dopamine metabolites in presenescent older rats. Psychopharmacol. 92:236-240.

    Google Scholar 

  6. Gilliam, P. E., Spirduso, W. W., Martin, T. P., Walters, T. J., Wilcox, R. E., and Farrar, R. P. 1984. The effects of exercise training on 3H-Spiperone binding in rat striatum. Pharmacol. Biochem. Behav. 20:863-867.

    PubMed  Google Scholar 

  7. Neeper, S. A., Gómez Pinilla, F., Choi, J., and Cotman, C. 1995. Exercise and brain neurotrophins. Nature 373:109.

    PubMed  Google Scholar 

  8. Neeper, S. A., Gómez Pinilla, F., Choi, J., and Cotman, C. 1996. Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res. 726:49-56.

    PubMed  Google Scholar 

  9. Ibarra, G. R., Rodríguez, J. A., Paratcha, G. Ch., and Azcurra, J. M. 1995. Permanent alteration of muscarinic acetylcholine receptor binding in rat striatum after circling training during development. Brain Res. 705:39-44.

    PubMed  Google Scholar 

  10. Ibarra, G. R., Paratcha, G. Ch., Wolansky, M. J., and Azcurra, J. M. 1996. Co-alteration of dopamine D2 receptor and muscarinic acetylcholine receptor binding in rat striatum after circling training. Neuroreport. 7:2491-2494.

    PubMed  Google Scholar 

  11. Alexander, K. A., Wakim, B. T., Doyle, G. S., Walsh, K. A., and Storm, D. R. 1988. Identification and characterization of the calmodulin-binding domain of neuromodulin, a neurospecific calmodulin binding protein. J. Biol. Chem. 263:7544-7549.

    PubMed  Google Scholar 

  12. Aloyo, J., Zwiers, H., and Gispen, W. H. 1983. Phosphorylation of B-50 protein by calcium activated phospholipid-dependent protein kinase and B-50 protein kinase. J. Neurochem. 41:649-653.

    PubMed  Google Scholar 

  13. Oestreicher, A. B., and Gispen, W. H. 1986. Comparison of the immunocytochemical distribution of the phosphoprotein B-50 in the cerebellum and hippocampus of immature and adult rat brain. Brain Res 375:267-279.

    PubMed  Google Scholar 

  14. Ramakers, G. M. J., De Graan, P. N. E., Urban, I. J. A., Kraay, D., Tang, T., Pasinelli, P., Oestreicher, A. B., and Gispen, W. H. 1995. Temporal differences in the phosphorylation state of pre-and post-synaptic protein kinase C substrates B-50/GAP-43 and Neurogranin during LTP. 1995. J. Biol. Chem. 270:13892-13898.

    PubMed  Google Scholar 

  15. Dekker, L. V., De Graan, P. N. E., Versteeg, D. H. G., Oestreicher, A. B., and Gispen, W. H. 1989. Phosphorylation of B-50 (GAP-43) is correlated with neurotransmitter released in rat hippocampal slices. J. Neurochem. 52:24-30.

    PubMed  Google Scholar 

  16. Benowitz, L. I., and Routtenberg, A. 1987. A membrane phosphoprotein associated with neural development, axonal regeneration, phospholipid metabolism and synaptic plasticity. Trends Neurosci. 10:527-531.

    Google Scholar 

  17. Gnegy, M. E., Hong, P., and Ferrell, S. T. 1993. Phosphorylation of neuromodulin in rat striatum after acute and repeated, intermittent anphetamine. Mol. Brain Res. 20:289-298.

    PubMed  Google Scholar 

  18. Sheu, F. S., Mc Cabe, B. J., Horn, G., and Routtenberg, A. 1993. Learning selectively increases protein kinase C substrate phosphorylation in specific regions of the chick brain. Proc. Natl. Acad. Sci. USA. 90:2705-2709.

    PubMed  Google Scholar 

  19. Azcurra, J. M., and De Robertis, E. 1967. Binding of dimethyl-14C-D-Tubocurarine-methyl-14C-hexamethonium and 3H-allopherine by isolated synaptic membranes of brain cortex. Int. J. Neuropharmacol. 6:15-26.

    PubMed  Google Scholar 

  20. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with Follin reagent. J. Biol. Chem. 193:265-272.

    PubMed  Google Scholar 

  21. Kristjansson, G. I., Zwiers, H., Oestreicher, A. B., and Gispen, W. H. 1982. Evidence that the synaptic phosphoprotein B-50 is localized exclusively in nerve tissue. J. Neurochem. 39:371-378.

    PubMed  Google Scholar 

  22. Towbin, H., Staehelin, T., and Gordon, J. 1979. Electrophoretic transfer of proteins from polyacrilamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA. 76:4350-4354.

    PubMed  Google Scholar 

  23. Oestreicher, A. B., Van Dongen, C. J., Zwiers, H., and Gispen, W. H. 1983. Affinity-purified anti B-50 protein antibody: interference with the function of the phosphoprotein B-50 in synaptic plasma membranes. J. Neurochem. 41:267-279.

    Google Scholar 

  24. Cole, G., Dobkin, K. R., Hansen, L. A., Terry, R. D., and Saitoh, T. 1988. Decreased levels of PKC in Alzheimer brain. Brain Res. 453:165-174.

    Google Scholar 

  25. Eichberg, J., De Graan, P. N. E., Schrama, L. H., and Gispen, W. H. 1986. Dioctamoyl-glycerol and phorbol-diesters enhanced phosphorylation of phosphoprotein B-50 in native synaptic plasma membranes. Biochem. Biophys. Res. Commun. 136:1007-1012.

    PubMed  Google Scholar 

  26. Nielander, H. B., Schrama, L. G., Van Rosen, H., Kasperaitis, M., Oestreicher, A. B., Gispen, W. H., and Schotman, P. 1990. Mutation of serine 41 in the neuron specific protein B-50 (GAP-43) prohibits phosphorylation by PKC. J. Neurochem. 55:1442-1445.

    PubMed  Google Scholar 

  27. Coggins, P. J., and Gispen, W. H. 1989. Evidence for a single PKC mediated phosphorylation site in rat brain protein B-50. J. Neurochem. 53:1895-1901.

    PubMed  Google Scholar 

  28. Apel, D. E., Litchfield, D. W., Clark, R. H., Krebs, E. G., and Storm, D.R. 1991. Phosphorylation of neuromodulin (GAP-43) by Casein Kinase II. J. Biol. Chem. 266:10544-10551.

    PubMed  Google Scholar 

  29. Spencer, S. A., Schuh, S. M., Liu, W. S., and Willard, M. B. 1992. GAP-43, a protein associated with axon growth, is phosphorylated at three sites in cultured neurons and rat brain. J. Biol. Chem. 267:9059-9064.

    PubMed  Google Scholar 

  30. Han, Y., and Dokas, L. A. 1991. Okadaic acid-induced inhibition of protein phosphatases. J. Neurochem. 57:1325-1331.

    PubMed  Google Scholar 

  31. Han, Y., Wang, W., Schlender, K. K., Ganjeizadeh, M., and Dokas, L. A. 1992. Protein phosphatases 1 and 2A dephosphorylate B-50 in presynaptic plasma membranes from rat brain. J. Neurochem. 59:364-374.

    PubMed  Google Scholar 

  32. Liu, Y., and Storm, D. R. 1989. Dephosphorylation of neuromodulin by calcineurin. J. Biol. Chem. 264:12800-12804.

    PubMed  Google Scholar 

  33. Schrama, L. H., Heemskerk, F. M. J., and De Graan, P. N. E. 1989. Dephosphorylation of Protein Kinase C-phosphorylated B-50/GAP-43 by the calmodulin-dependent phosphatase calcineurin. Neurosci. Res. Commun. 5:141-147.

    Google Scholar 

  34. Ali, S. M., Bullock, S., and Rose, S. 1988. Phosphorylation of synaptic proteins in chick forebrain: Changes with development and passive avoidance training. J. Neurochem. 50:1579-1587.

    PubMed  Google Scholar 

  35. Cammarota, M., Paratcha, G. Ch., Levi de Stein, M., Bernabeu, R., Izquierdo, I., and Medina, J. H. 1997. B-50/GAP-43 phosphorylation and PKC activity are increased in rat hippocampal synaptosomal membranes after an inhibitory avoidance training. Neurochem. Res. 22:499-505.

    PubMed  Google Scholar 

  36. Giambalvo, C. T. 1988. Protein Kinase C and dopamine release. Effects of dopamine acting drugs in vivo. Biochem. Pharmacol. 37:4009-4017.

    PubMed  Google Scholar 

  37. Giambalvo, C.T., and Wagner, R. L. 1994. Activation of D1 and D2 dopamine receptors inhibits protein kinase C activity in striatal synaptoneurosomes. J. Neurochem. 63:169-176.

    PubMed  Google Scholar 

  38. Nelson, R. B., Linden, D. J., and Routtenberg, A. 1989. Phosphoproteins localized to presynaptic terminal linked to persistence of long-term potentiation (LTP): quantitative analysis of two dimensional gels. Brain Res. 497:30-42.

    PubMed  Google Scholar 

  39. Gianotti, C., Nunai, M. G., Gispen, W. H., and Corradetti, R. 1992. Phosphorylation of the presynaptic protein B-50 (GAP-43) is increased during electrically induced long-term potentiation. Neuron 8:843-848.

    PubMed  Google Scholar 

  40. Pizzi, M., Da Prada, M., Valerio, A., Memo, A., Spano, P. F., and Haefely, W. E. 1988. Dopamine D2 receptor stimulation inhibits inositol phosphate generating system in rat striatal slices. Brain Res. 456:235-240.

    PubMed  Google Scholar 

  41. Von Euler, G., and Von Euler, A. 1991. Dopamine D2 receptors attenuate phophatidylinositol 4,5-bisphosphate in synaptosomal membranes from rat neostriatum. J. Neurochem. 56:136-140.

    PubMed  Google Scholar 

  42. Kelly, E., Batty, I., and Nahorski, S. R. 1988. Dopamine receptor stimulation does not affect phosphoinositide hydrolysis in slices of rat striatum. J. Neurochem. 51:918-924.

    PubMed  Google Scholar 

  43. Van Dongen, C. J., Zwiers, H., De Graan, P. N. E., and Gispen, W. H. 1985. Modulation of the activity of purified phosphatidylinositol-4-phosphate kinase by phosphorylated and dephosphorylated B-50 protein. Biochem. Biophys. Res. Commun. 8:1219-1227.

    Google Scholar 

  44. Van Hooff, C. O. M., De Graan, P. N. E., Oestreicher, A. B., and Gispen, W. H., 1988. B-50 phosphorylation and polyphosphoinositide metabolism in nerve growth cone membranes. J. Neurosci. 8:1789-1795.

    PubMed  Google Scholar 

  45. O'Brian, C. A., Arthur, W. L., and Weinstein, I. B., 1987. The activation of PKC by the polyphosphoinositides phosphatidylinositol 4,5-diphosphate and phophatidylinositol 4-monophosphate. FEBS Lett. 214:339-342.

    PubMed  Google Scholar 

  46. Van Hooff, C. O. M., De Graan, P. N. E., Oestreicher, A. B., and Gispen, W. H. 1989. Muscarinic receptor activation stimulates B-50/GAP-43 phosphorylation in isolated nerve growth cones. J. Neurosci. 9:3753-3759.

    PubMed  Google Scholar 

  47. Coyle, J. T., and Campochiaro, P. J. 1976. Ontogenesis of dopaminergic-cholinergic interactions in the rat striatum: A neurochemical study. J. Neurochem. 27:673-678.

    PubMed  Google Scholar 

  48. Singer, W. 1995. Development and plasticity of cortical processing architecture. Science. 270:758-764.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paratcha, G.C., Ibarra, G.R., Cabrera, R. et al. Decreased Phosphorylation of GAP-43/B-50 in Striatal Synaptic Plasma Membranes after Circling Motor Activity. Neurochem Res 23, 1241–1249 (1998). https://doi.org/10.1023/A:1020736014882

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020736014882

Navigation