Skip to main content
Log in

Glycosyltransferases in Different Brain Regions During Chick Embryo Development

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Glycosphingolipids, in particular gangliosides, play a crucial role in neuronal development and are known to change dramatically in total content and distribution in different brain areas during embryogenesis. In the present work we analyzed the activity of enzymes involved in the metabolism of gangliosides, at different periods of functional maturation in different regions of chick embryo brain. Our data demonstrate differences in the enzymatic activities in the examined areas; these differences might be correlated with the functional lateralization occurring in the brain during development. Significative differences were found in glycosphingolipid composition between controlateral cerebral hemispheres and optic lobes; these results together with previous data we found, contribute to reinforce our hypothesis on the occurrence of biochemical lateralization during early brain development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. IUPAC-IUB Joint Commissionon Biochemical Nomenclature (JCBN). 1998. Nomenclature of glycolipids. Recommendations 1997. Eur. J. Biochem. 257:293-298.

    Google Scholar 

  2. Hakomori, S. 1990. Bifunctional role of glycosphingolipids. J. Biol. Chem. 265:18713-18716.

    Google Scholar 

  3. Zeller, C. B. and Marchase, R. B. 1992. Gangliosides as modulators of cell function. Am. J. Physiol. 262:C1341-C1355.

    Google Scholar 

  4. Huwiler, A., Kolter, T., Pfeilschifter, J., and Sandhoff, K. 2000. Physiology and pathophysiology of sphingolipid metabolism and signaling. Biochim. Biophys. Acta 1485:63-99.

    Google Scholar 

  5. Popko, B. 2000. Myelin galactolipids: mediators of axon-glial interactions? Glia 29:149-153.

    Google Scholar 

  6. Merril, A. H., Schmelz, E.-M., Dillehay, D. L., Spiegel, S., Shayman, J. A., Schroeder, J. J., Riley, R. T., Voss, K. A., and Wang, E. 1997. Spingolipids: the enigmatic lipid class: biochemistry, physiology and pathophysiology. Toxicol. Appl. Pharmacol. 142:208-225.

    Google Scholar 

  7. Merrill, A. H. 1991. Cell regulation by sphingosine and more complex sphingolipids. J. Bioenerg. Biomembr. 23:83-104.

    Google Scholar 

  8. Dyer, C. A. and Benjamins, J. A. 1990. GSL and transmembrane signaling: antibodies to galactocerebroside cause an influx of calcium in oligodendrocytes. J. Cell Biol. 111:625-633.

    Google Scholar 

  9. Nagai, Y. 1994. Functional roles of gangliosides in bio-signaling. Behav. Brain Res. 66:99-104.

    Google Scholar 

  10. Nagai, Y. and Iwamori, M. 1995. Cellular biology of gangliosides. Pages 197-241, in Rosenberg A. (ed.), Biology of the Sialic Acid, Plenum Press, New York.

    Google Scholar 

  11. Kopitz, J., von Reitzenstein, C., Burchert, M., Cants, M., and Gabius, H. J. 1998. Galectin-1 is a major receptor for ganglioside GM1, aproduct of the growth-controlling acitvity of a cell surface ganglioside sialidase, on human neuroblastoma cells In culture. J. Biol. Chem. 273:589-596.

    Google Scholar 

  12. Rahmann, H., Rosner, H., Kortje K.-H., Beitinger, H., and Seybold, V. 1994. Ca2+-ganglioside interaction in neuronal differentiation and developmen. Pages 127-145, in Svennerholm, L., Asbury, A. K., Reisfeld, R. A., Sandhoff, K., Suzuki, K., Tettamanti, G., and Toffano, G. (eds.), Progress in Brain Research Vol. 101, Elsevier Science BV.

  13. Higashi, H., Omori, A., and Yamagata, T. 1992. Calmodulin, a ganglioside-binding protein. J. Biol. Chem. 267:9831-9838.

    Google Scholar 

  14. Kasahara, K., Watanabe, Y., Yamamoto, T., and Sanai, Y. 1997 Association of Src family tyrosine kinase Lyn with ganglioside GD3 In rat brain. J. Biol. Che. 272:29947-29953.

    Google Scholar 

  15. Masserini, M., Palestini, P., and Pitto, M. 1999. Glyclipid-enriched caveolae and caveolae-like domains in the nervous syste. J. Neurochem. 73:1-11.

    Google Scholar 

  16. Teixeira, A., Chaverot, N., Schroder, C., Strosberg, A. D., Couraud, P.-O., and Cazaubon, S. 1999. Requirement of caveolale microdomains In extracellular signal-regulated kinase and focal adhesion kinase activation Induced by endothelin-1 in primary astrocytes. J. Neurochem. 72:120-128.

    Google Scholar 

  17. Hakomori, S., Handa, K., Iwabuchi, K., Yamamura, S., and Prinetti, A. 1998. New insights in glycosphingolipid function: “glycosignaling domain,” a cell surface assembly of glycosphingolipids with signal transducer molecules, involved in cell adhesion coupled with signaling. Glycobiology 8:xi-xix.

    Google Scholar 

  18. Rampersaud, A. A., Oblinger, J. L., Ponnappan, R. K., Burry, R. W., and Yates, A. J. 1999. Gangliosides and growth factor receptor regulation. Biochem. Soc. Trans. 27:415-422.

    Google Scholar 

  19. Furukawa, K., Takamiya, K., Okada, M., Inoue, M., Fukumoto, S., and Furukawa, K. 2001. Novel functions of complex carbohydrates elucidated by the mutant mice of glycosyltransferase genes. Biochim. Biophys. Acta 1525:1-12.

    Google Scholar 

  20. Iwamoto, T., Fukumoto, S., Kanaoka, K., Sakai, E., Shibata, M., Fukumoto, E., Inokuchi, J., Takamiya, K., Furukawa, K., Furukawa, K., Kato, Y., and Mizuno, A. 2001. Lactosylceramide is essential for the osteoclastogenesis mediated by macrophagecolony-stimulating factor and receptor activator of nuclear factor-kappa B ligand. J. Biol. Chem. 276:406031-40638.

    Google Scholar 

  21. Takamiya, K., Yamamoto, A., Furukawa, K., Yamashiro, S., Shin, M., Okada, M., Fukumoto, S., Haraguchi, M., Takeda, N., Fujimura, K., Sakae, M., Kishikawa, M., Shiku, H., Furukawa, K., and Aizawa, S. 1996. Mice with disrupted GM2/GD2 synthase gene lack complex gangliosides but exhibit only subtle defects in their nervous system Proc. Natl. Acad. Sci. U.S.A. 93820:10662-10667.

    Google Scholar 

  22. Furukawa, K., Fukumoto, S., Mutoh, T., Ito, M., Ohishi, H., Furukawa, K., Mitsuda, T., Okajima, T., Honda, T., and Sugiura, Y. 1999. Roles of glycosphingolipids in the nervous system: studies by remodeling of carbohydrate moiety in cultured cells and in experimental animals. Glycoconj. J. 16:S57.

    Google Scholar 

  23. Sheikh, K. A., Sun, J., Liu, Y., Kawai, H., Crawford, T. O., Proia, R. L., Griffin, J. W., and Schnaar, R. L. 1999. Mice lacking complex gangliosides develop Wallerian degeneration and myelination defects. Proc. Natl. Acad. Sci. U.S.A. 96(13): 7532-7537.

    Google Scholar 

  24. Hakomori, S., Yamamura, S., and Handa, A. K. 1998. Signal transduction through glyco(sphingo)lipids. Introduction and recent studies on glyco(sphingo)lipid-enriched microdomains. Ann. N. Y. Acad. Sci. 845:1-10.

    Google Scholar 

  25. Masserini, M. and Ravasi, D. 2001. Role of sphingolipids In the biogenesis of membrane domains. Biochim. Biophys. Acta 1532(3):149-161.

    Google Scholar 

  26. Dreyfus, H., Urban, P. F., Edel-Hart, S., and Mandel, P. 1975. Developmental patterns of gangliosides and phospholipids in chick retina and brain. J. Neurochem. 25:245-250.

    Google Scholar 

  27. Rosner, H. 1975. Changes in the contents of gangliosides and ganglioside pattern of chicken brain. J. Neurochem. 24:815-816.

    Google Scholar 

  28. Rosner, H. 1982. Ganglioside changes in the chick optic lobes as biochemical indicators of brain development and maturation. Brain Res. 236:49-61.

    Google Scholar 

  29. Seybold, V. and Rahmann, H. 1985. Brain gangliosides in birds with different types of postnatal development. Dev. Br. Res. 17:201-208.

    Google Scholar 

  30. Sonnino, S., Bassi, R., Chigorno, V., and Tettamanti G. 1990. Further studies on changes of chicken brain gangliosides during prenatal and postnatal life. J. Neurochem. 54:1653-1660.

    Google Scholar 

  31. Van Echten, G. and Sandhoff, K. 1993. Ganglioside metabolism. J. Biol. Chem. 268:5341-5344.

    Google Scholar 

  32. Kolter, T., Doering, T., Wilkening, G., Werth, N., and Sandhoff, K. 1999. Recent advances in the biochemistry of glycosphingolipid metabolism. Biochem. Soc. Trans. 27:409-415.

    Google Scholar 

  33. Basu, S. and Basu, M. 1982. Expression of glycosphingolipid glycosyltransferases in development and transformation, Pages 265-284, in Horowits, M. I. (ed.), The Glycoconjugates vol. III. Academic Press. New York.

    Google Scholar 

  34. Rizzo, A. M., Galli, C. F., Montorfano, G., and Berra, B. 1995. Phospholipid distribution and fatty acid composition in different brain regions during chick embryo development. J. Neurochem. 64:1728-1735.

    Google Scholar 

  35. Basu, S., Basu, M., and Basu, S. S. 1995. Biological specificity of sialyltransferases, Pages 69-94, in Rosenberg, A. (ed.), Biology of Sialic Acid. Plenum Press, New York.

    Google Scholar 

  36. Basu M., Basu S., Stoffyn, A., and Stoffyn, P. 1982. Biosynthesis in vitro of sialyl(a2-3))neolactosylceramide by a sialytransferase from embryonic chicken brain. J. Biol. Chem. 257: 12765-12769.

    Google Scholar 

  37. Peterson, G. M. 1977. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal. Biochem. 83:346-356.

    Google Scholar 

  38. Basu, M., Das, K. K., Kyle, J. W., Chon, H. C., Schaeper, R., and Basu, S. 1987. Complex carbohydrates, Pages 575-607, in (Ginsburg, V., (ed.), Methods in Enzymology, vol. 38, Academic Press., New York.

    Google Scholar 

  39. Tettamanti, G., Bonali, F., Marchesini, S., and Zambotti, V. 1973. A new procedure for the extraction and purification of brain gangliosides. Biochim. Biophys. Acta 296:160-170.

    Google Scholar 

  40. Vance, D. E. and Sweeley, C. C. 1967. Quantitative determination of the neutral glycosilceramides in human blood. J. Lipid Res. 8:621-630.

    Google Scholar 

  41. Svennerholm, L. and Fredman, P. 1980. A procedure for the quantitative isolation of brain gangliosides. Biochim. Biophys. Acta 617:97-109.

    Google Scholar 

  42. Smith, I. 1960. Chromatographic and Electrophoretic Technique. Vol 1, p 260, Intersciences, New York.

    Google Scholar 

  43. Panzetta, P., Maccione, H. J. F., and Caputto R. 1980. Synthesis of retinal gangliosides during chick embryonic development. J. Neurochem. 35:100-108.

    Google Scholar 

  44. Rahmann, H. 1995. Brain gangliosides and memory formation. Behav.Brain Res. 66:105-116.

    Google Scholar 

  45. Rogers, L. J. 1991. Development of lateralization, Pages 507-535, in Andrew, R. J. (ed.), Neural and Behavioural Plasticity, Oxford University Press.

  46. Rogers, L. J., Robinson, T., and Ehrlich, D. 1986. Role of supraoptic decussation in development of asymmetry of brain function in the chicken. Dev. Brain Res. 28:33-39.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rizzo, A.M., Rossi, F. & Berra, B. Glycosyltransferases in Different Brain Regions During Chick Embryo Development. Neurochem Res 27, 815–821 (2002). https://doi.org/10.1023/A:1020213209078

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020213209078

Navigation