Skip to main content
Log in

Black Hole Thermodynamics, Casimir Effect and Induced Gravity

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

An analogy between the subtraction procedure in the Gibbons-Hawking Euclidean path integral approach to black hole thermodynamics and the Casimir effect is shown. Then a conjecture about a possible Casimir nature of the Gibbons-Hawking subtraction is made in the framework of Sakharov's induced gravity. In this framework it appears that the degrees of freedom involved in the Bekenstein-Hawking entropy can be naturally identified with zero-point modes of the matter fields. Some consequences of this view are sketched.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Gibbons, G. W., and Hawking, S. W. (1977). Phys. Rev. D15, 2752.

    Google Scholar 

  2. Hawking, S. W., Horowitz, G. T. (1996). Class. Quantum Grav. 13, 1478.

    Google Scholar 

  3. Hawking, S. W. (1979). In General Relativity: An Einstein Centenary Survey, S. W. Hawking and W. Israel, eds. (Cambridge University Press, Cambridge).

    Google Scholar 

  4. Birrell, N. D., and Davies, P. C. W. (1982). Quantum Fields in Curved Space (Cambridge University Press, Cambridge).

    Google Scholar 

  5. Grib, A. A., Mamayev, S. G., Mostepanenko, V. M. (1994). Vacuum Quantum Effects in Strong Fields (Friedmann Laboratory Publishing, St. Petersburg, Russia).

    Google Scholar 

  6. Plunien, G., Müller, B., and Greiner, W. (1986). Phys. Rep. 134, 87.

    Google Scholar 

  7. Plunien, G., Müller, B., and Greiner, W. (1987). Physica 145A, 202.

    Google Scholar 

  8. Dowker, J. S., and Kennedy, G. (1978). J. Phys. A11, 895.

    Google Scholar 

  9. Dowker, J. S., and Banach, R. (1978). J. Phys. A11, 2255.

    Google Scholar 

  10. DeWitt, B. S., Hart, C. H., and Isham, C. J. (1979). Physica 96A, 197.

    Google Scholar 

  11. Goncharov, Y. P., and Bytsenko, A. A. (1991). Class. Quantum Grav. 8, L211; (1986). Nucl. Phys. B271, 726.

    Google Scholar 

  12. Wolf, J. A. (1967). Spaces of constant Curvature (University of California Press, Berkeley).

    Google Scholar 

  13. Sakharov, A. D. (1968). Sov. Phys. Dok. 12, 1040.

    Google Scholar 

  14. Adler, S. L. (1990). In: Sakharov Remembered. A Tribute by Friends and Colleagues, S. D. Drell and S. P. Kapitza, eds. (American Institute of Physics, New York, in cooperation with the Physical Society of the USSR and Priroda Magazine).

    Google Scholar 

  15. Misner, C. W., Thorne, K. S. and Wheeler, J. A. (1973). Gravitation (W. H. Freeman, San Francisco).

    Google Scholar 

  16. See e.g. Adler, S. L. (1982). Rev. Mod. Phys. 54, 729.

    Google Scholar 

  17. Sakharov, A. D. (1976). Theor. Math. Phys. 23, 435.

    Google Scholar 

  18. Kennedy, G., Critchley, R., and Dowker, J. S. (1980). Ann. Phys. 125, 346.

    Google Scholar 

  19. Denardo, G., and Spallucci, E. (1982). Nuovo Cimento A69, 151.

    Google Scholar 

  20. Barvinsky, A. O., and Solodukhin, S. N. (1995). “Non-Minimal coupling, boundary terms and renormalization of the Einstein-Hilbert action and black hole entropy.” Preprint gr-qc/9512047.

  21. Belgiorno, F., and Liberati, S. (1996). Phys. Rev. D53, 3172; Belgiorno, F., and Martellini, M. (1996). Phys. Rev. D53, 7073; Belgiorno, F., and Martellini, M. “Equilibrium Thermodynamics for Quantum Fields on a Black Hole Background”, to be published in the proceedings of the Second International Conference “Astronomy, Cosmoparticle Physics” — COSMION '96 (May 25–June 6, 1996, Moscow).

    Google Scholar 

  22. Gerlach, U. H. (1976). Phys. Rev. D14, 1479.

    Google Scholar 

  23. Jacobson, T. (1994). “Black Hole Entropy and Induced Gravity.” Preprint gr-qc/9404039.

  24. Frolov, V. P., Fursaev, D. V., and Zelnikov, A. I. (1997). Nucl. Phys. B486, 339.

    Google Scholar 

  25. Bombelli, L., Koul, R. K., Lee, J., and Sorkin, R. (1986). Phys. Rev. D34, 373.

    Google Scholar 

  26. Bekenstein, J. D. (1994). “Do We Understand Black Hole Entropy?” Preprint gr-qc/9409015.

  27. Wald, R. M. (1994). Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics (University of Chicago Press, Chicago and London).

    Google Scholar 

  28. Israel, W. (1976). Phys. Lett. A57, 107.

    Google Scholar 

  29. Barvinsky, A. O., Frolov, V. P., and Zelnikov, A. I. (1995). Phys. Rev. D51, 1741.

    Google Scholar 

  30. Takahashi, Y., Umezawa, H. (1975). Collective Phenomena 2, 55.

    Google Scholar 

  31. Sciama, D. W., Candelas, P., and Deutsch, D. (1981). Adv. Phys. 30, 327.

    Google Scholar 

  32. Sarmiento, A. (1991). In 'Vacuum Structure in Intense Fields, H. M. Fried and B. Muller (Plenum Press, New York); Sanchez, N., and Whiting, B. F. (1986). Phys. Rev. D34, 1056.

    Google Scholar 

  33. Jacobson, T. (1995). Phys. Rev. Lett. 75, 1260.

    Google Scholar 

  34. Hu, B. L. (1996). “General Relativity as Geometro-Hydrodynamics.” Preprint gr-qc/9607070.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belgiorno, F., Liberati, S. Black Hole Thermodynamics, Casimir Effect and Induced Gravity. General Relativity and Gravitation 29, 1181–1194 (1997). https://doi.org/10.1023/A:1018895226085

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018895226085

Navigation