Skip to main content
Log in

Mean Motion Resonances, Gas Drag, and Supersonic Planetesimals in the Solar Nebula

  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We examine the orbital evolution of planetesimals under the influence of Jupiter's perturbations and nebular gas drag, under the assumption that gas persisted in the asteroid region for some time after Jupiter attained its final mass. Two distinct mechanisms, associated with the 2 : 1 and 3 : 2 mean motion resonances, can excite eccentricities to high values, despite the damping effect of drag. If Jupiter's eccentricity was comparable to its present value, planetesimals can be temporarily trapped in the 2 : 1 resonance. Bodies crossing the 3 : 2 resonance can enter a region of phase space with overlapping high-order resonances. Both mechanisms can produce eccentricities greater than 0.5 for asteroid-sized planetesimals. The combination of resonant perturbations and drag causes secular decay of semimajor axes, resulting in migration of bodies from the outer to inner belt. Inclinations remain low, implying significant collisional evolution during this migration. Velocities of resonant bodies relative to the gas are highly supersonic; these would have been a source of shock waves in the solar nebula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adachi, I., Hayashi, C. and Nakazawa, K.: 1976, 'The gas drag effect on the elliptic motion of a solid body in the primordial solar nebula', Prog. Theor. Phys. 55, 1756–1771.

    Google Scholar 

  • Boss, A. P.: 1997, 'Giant planet formation by gravitational instability', Science 276, 1836–1839.

    Google Scholar 

  • Dermott, S. F. and Murray, C. D.: 1983, 'Nature of the Kirkwood gaps in the asteroid belt', Nature 301, 201–205.

    Google Scholar 

  • Franklin, F. and Lecar, M.: 2000, 'On the transport of bodies within and from the asteroid belt', Meteor. Plan. Sci. 35, 331–340.

    Google Scholar 

  • Holman, M. J. and Murray, N. W.: 1996, 'Chaos in high-order mean motion resonances in the outer asteroid belt', Astron. J. 112, 1278–1293.

    Google Scholar 

  • Hood, L. L.: 1998, 'Thermal processing of chondrule and CAI precursors in planetesimal bow shocks', Meteor. Plan. Sci. 33, 97–107.

    Google Scholar 

  • Ida, S. and Lin, D. N. C.: 1996, 'Long term gas drag effect on the structure of the asteroid belt and its implications for the solar nebula', Astron. J. 112, 1239–1246.

    Google Scholar 

  • Kary, D. M., Lissauer, J. J. and Greenzweig, Y.: 1993, 'Nebular gas drag and planetary accretion', Icarus 106, 288–307.

    Google Scholar 

  • Kortenkamp, S. and Wetherill, G. W.: 2000, 'Terrestrial planet and asteroid formation in the presence of giant planets. I. Relative velocities of planetesimals subject to Jupiter and Saturn perturbations', Icarus 143, 60–73.

    Google Scholar 

  • Lecar,M. and Franklin, F.: 1997, 'The solar nebula, secular resonances, and the asteroid belt', Icarus 129, 134–146.

    Google Scholar 

  • Liou, J.-C. and Malhotra, R.: 1997, 'Depletion of the outer asteroid belt', Science 275, 375–377.

    Google Scholar 

  • Marzari, F., Scholl, H., Tomasella, L. and Vanzani, V.: 1997, 'Gas drag effects on planetesimals in the 2:1 resonance with proto-Jupiter', Planet. Space Sci. 45, 337–344.

    Google Scholar 

  • Miller, D. G. and Bailey, A. B.: 1979, 'Sphere drag at Mach numbers from 0.3 to 2.0 at Reynolds numbers approaching 104', J. Fluid Mech. 93, 449–464.

    Google Scholar 

  • Nagasawa, M., Tanaka, H. and Ida, S.: 2000, 'Orbital evolution of asteroids during depletion of the solar nebula', Astron. J. 119, 1480–1497.

    Google Scholar 

  • Peale, S.: 1986, 'Orbital resonances, unusual configurations, and exotic rotation states among the planetary satellites', In: J. A. Burns and M. S. Matthews (eds), Satellites, Univ. Arizona Press, Tucson, pp. 159–223.

    Google Scholar 

  • Podosek, F. and Cassen, P.: 1994, 'Theoretical, observational, and isotopic estimates of the lifetime of the solar nebula', Meteoritics 29, 6–25.

    Google Scholar 

  • Pollack, J., Hubickyj, O., Bodenheimer, P., Lissauer, J., Podolak, M. and Greenzweig, Y.: 1996, 'Formation of the giant planets by concurrent accretion of solids and gas', Icarus 124, 62–85.

    Google Scholar 

  • Shu, F., Johnstone, D. and Hollenbach, D.: 1983, 'Photoevaporation of the solar nebula and the formation of the giant planets', Icarus 106, 92–101.

    Google Scholar 

  • Ward, W. R.: 1981, 'Solar nebula dispersal and the stability of the planetary system I. Scanning secular resoance theory', Icarus, 47, 234–264.

    Google Scholar 

  • Weidenschilling, S. J. and Davis, D. R.: 1985, 'Orbital resonances in the solar nebula: implications for planetary accretion', Icarus 62, 16–29.

    Google Scholar 

  • Weidenschilling, S. J.: 1977, 'Aerodynamics of solid bodies in the solar nebula', Mon. Not. R. Astr. Soc. 180, 57–70.

    Google Scholar 

  • Weidenschilling, S. J., Marzari, F. and Hood, L. L.: 1998, 'The origin of chondrules at Jovian resonances', Science 279, 681–683.

    Google Scholar 

  • Whipple, F. L.: 1972, 'On certain aerodynamic processes for asteroids and comets', In: A. Elvius (ed), From Plasma to Planet, Wiley, New York, pp. 211–232.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marzari, F., Weidenschilling, S. Mean Motion Resonances, Gas Drag, and Supersonic Planetesimals in the Solar Nebula. Celestial Mechanics and Dynamical Astronomy 82, 225–242 (2002). https://doi.org/10.1023/A:1015067000812

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015067000812

Navigation