Skip to main content
Log in

Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

We investigated the overlap among quantitative trait loci (QTLs) in maize for seminal root traits measured in hydroponics with QTLs for grain yield under well-watered (GY-WW) and water-stressed (GY-WS) field conditions as well as for a drought tolerance index (DTI) computed as GY-WS/GY-WW. In hydroponics, 11, 7, 9, and 10 QTLs were identified for primary root length (R1L), primary root diameter (R1D), primary root weight (R1W), and for the weight of the adventitious seminal roots (R2W), respectively. In the field, 7, 8, and 9 QTLs were identified for GY-WW, GY-WS, and DTI, respectively. Despite the weak correlation of root traits in hydroponics with GY-WW, GY-WS, and DTI, a noticeable overlap between the corresponding QTLs was observed. QTLs for R2W most frequently and consistently overlapped with QTLs for GY-WW, GY-WS, and/or DTI. At four QTL regions, an increase in R2W was positively associated with GY-WW, GY-WS, and/or DTI. A 10 cM interval on chromosome 1 between PGAMCTA205 and php20644 showed the strongest effect on R1L, R1D, R2W, GY-WW, GY-WS, and DTI. These results indicate the feasibility of using hydroponics in maize to identify QTL regions controlling root traits at an early growth stage and also influencing GY in the field. A comparative analysis of the QTL regions herein identified with those described in previous studies investigating root traits in different maize populations revealed a number of QTLs in common.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agrama, H.A.S. and Moussa, M.E. 1996. Mapping QTLs in breeding for drought tolerance in maize (Zea mays L.). Euphytica 91: 89-97.

    Google Scholar 

  • Bassam, B.J., Caetano-Anollés, G. and Gresshoff, P.M. 1991. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem. 196: 80-83.

    Google Scholar 

  • Beavis, W.D. 1994. The power and deceit of QTL experiments: lessons from comparative QTL studies. In: Proceedings 49thAnnual Corn and Sorghum Research Conference, American Seed Trade Association, Washington, DC, pp. 250-266.

    Google Scholar 

  • Beavis, W.D. 1998. QTL analysis: power, precision, and accuracy. In: A.H. Paterson (Ed.) Molecular Dissection of Complex Traits, CRC Press, Boca Raton, FL, pp. 145-162.

    Google Scholar 

  • Beavis, W.D., Grant, D., Albertsen, M. and Fincher, R. 1991. Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci. Theor. Appl. Genet. 83: 141-145.

    Google Scholar 

  • Bertin, P. and Gallais, A. 2000. Genetic variation for nitrogen use efficiency in a set of recombinant maize inbred lines. I. Agrophysiological results. Maydica 45: 53-66.

    Google Scholar 

  • Blum, A. 1988. Plant breeding for stress environments. In: F.W.G. Baker (Ed.) Drought Resistance in Cereals, ICSU Press/CAB International, UK, pp. 77-81.

    Google Scholar 

  • Bohn, M., Khairallah, M.M., Gonzáles de León, D., Hoisington, D.A., Utz, H.F., Deutsch, J.A., Jewell, D.C., Mihm, J.A. and Melchinger, A.E. 1996. QTL mapping in tropical maize. I. Genomic regions affecting leaf feeding resistance to sugarcane borer and other traits. Crop Sci. 36: 1352-1361.

    Google Scholar 

  • Castiglioni, P., Pozzi, C., Heun, M., Terzi, V., Müller, K.J., Rohde, W. and Salamini, F. 1998. An AFLP-based procedure for the efficient mapping of mutations and DNA probes in barley. Genetics 149: 2039-2056.

    Google Scholar 

  • Champoux, M.C., Wang, G., Sarkarung, S., Mackill, D.J., O'Toole, J.C., Huang, N. and McCouch, S.R. 1995. Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theor. Appl. Genet. 90: 969-981.

    Google Scholar 

  • Cushman, J.C. and Bohnert, H.J. 2000. Genomic approaches to plant stress tolerance. Curr. Opin. Plant Biol. 3: 117-124.

    Google Scholar 

  • Davis, G.L., McMullen, M.D., Baysdorfer, C., Musket, T., Grant, D., Staebell, M., Xu, G., Polacco, M., Koster, L., Melia-Hancock, S., Houchins, K., Chao, S. and Coe, E.H. Jr. 1999. A maize map standard with sequenced core markers, grass genome reference points and 932 expressed sequence tagged sites (ESTs) in a 1736-locus map. Genetics 152: 1137-1172.

    Google Scholar 

  • Di Fonzo, N., Motto, M., Maggiore, T., Sabatino, R. and Salamini, F. 1982. N uptake, translocation and relationships among Nrelated traits in maize as affected by genotype. Agronomie 2: 789-796.

    Google Scholar 

  • Doebley, J., Stec, A. and Gustus, C. 1995. Teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141: 333-346.

    Google Scholar 

  • Doyle, G.G. 1978. An ageotropic primary rootmutant. Maize Genet. Coop. Newsl. 52: 77.

    Google Scholar 

  • Frova, C., Krajewski, P., Di Fonzo, N., Villa, M. and Sari-Gorla, M. 1999. Genetic analysis of drought tolerance in maize by molecular markers. I. Yield components. Theor. Appl. Genet. 99: 280-288.

    Google Scholar 

  • Giuliani, M.M., Darrah, L.L., Salvi, S., Sanguineti, M.C., Landi, P., Conti, S. and Tuberosa, R. 2000. Comparative QTL analysis in maize for vertical root pulling resistance in the field and root traits in hydroponics. In: International Conference 'Plant & Animal Genome VIII', 9-12 January 2000, San Diego, CA, p. 114.

  • Groh, S., Gonzáles de León, D., Khairallah, M.M., Jiang, C., Bergvinson, D., Bohn, M., Hoisington, D.A. and Melchinger, A.E. 1998. QTL mapping in tropical maize. III. Genomic regions for resistance to Diatraea spp. and associated traits RIL populations. Crop Sci. 38: 1062-1072.

    Google Scholar 

  • Guingo, E., Hébert, Y. and Charcosset, A. 1998. Genetic analysis of root traits in maize. Agronomie 18: 225-235.

    Google Scholar 

  • Haley, C.S. and Knott, S.A. 1992. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69: 315-324.

    Google Scholar 

  • Hetz, W., Hochholdinger, F., Schwall, M. and Feix, G. 1996. Isolation and characterization of rtcs, a maize mutant deficient in the formation of nodal roots. Plant J. 10: 845-857.

    Google Scholar 

  • Hochholdinger, F. and Feix, G. 1998. Early post-embryonic root formation is specifically affected in the maize mutant Irtl. Plant J. 16: 247-255.

    Google Scholar 

  • Hochholdinger, F., Park, W.J. and Feix, G. 1998. Isolation of the new root mutant slrl affecting lateral root formation. Maize Genet. Coop. Newsl. 72: 29-30.

    Google Scholar 

  • Jansen, R.C. and Stam, P. 1994. High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136: 1447-1455.

    Google Scholar 

  • Jenkins, M.T. 1930. Heritable characters of maize. XXXIVRootless. J. Hered. 21: 79-80.

    Google Scholar 

  • Kiesselbach, T.A. 1949. The structure and reproduction of corn. Agricultural Experiment Station, Lincoln, NE. Research Bulletin 161.

    Google Scholar 

  • Landi, P., Conti, S., Gherardi, F., Sanguineti, M.C. and Tuberosa, R. 1995. Genetic analysis of leaf ABA concentration and of agronomic traits in maize hybrids grown under different water regimes. Maydica 40: 179-186.

    Google Scholar 

  • Landi, P., Albrecht, B., Giuliani, M.M. and Sanguineti, M.C. 1998. Seedling characteristics in hydroponic culture and field performance of maize genotypes with different resistance to root lodging. Maydica 43: 111-116.

    Google Scholar 

  • Landi, P., Giuliani, M.M., Darrah, L.L., Tuberosa, R., Conti, S. and Sanguineti, M.C. 2001. Variability for root and shoot traits in a maize population grown in hydroponics and in the field and their relationships with vertical root pulling resistance. Maydica 46: 177-182.

    Google Scholar 

  • Lebreton, C., Lazic-Jancic, V., Steed, A., Pekic, S. and Quarrie, S.A. 1995. Identification of QTL for drought responses in maize and their use in testing causal relationships between traits. J. Exp. Bot. 46: 853-865.

    Google Scholar 

  • Lee, M. 1995. DNA markers and plant breeding programs. Adv. Agron. 55: 265-344.

    Google Scholar 

  • Lin, Y.R., Schertz, K.F. and Paterson, A. 1995. Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. Genetics 141: 391-411.

    Google Scholar 

  • Lincoln, S.E. and Lander, E.S. 1992. Systematic detection of errors in genetic linkage data. Genomics 14: 604-610.

    Google Scholar 

  • Ludlow, M.M. and Muchow, R.C. 1990. A critical evaluation of traits for improving crop yields in water-limited environments. Adv. Agron. 43: 107-153.

    Google Scholar 

  • Nass, H.G. and Zuber, M.S. 1971. Correlation of corn (Zea mays L.) roots early in development to mature root development. Crop Sci. 11: 655-658.

    Google Scholar 

  • Neuffer, M.G., Coe, E.H. and Wessler, S. R. 1997. Mutants of Maize. Cold Spring Harbor Laboratory Press, Plainview, NY.

    Google Scholar 

  • Nguyen, H.T., Babu, R.C. and Blum, A. 1997. Breeding for drought resistance in rice: physiology and molecular genetics considerations. Crop Sci. 37: 1426-1434.

    Google Scholar 

  • Openshaw, S. and Frascaroli, E. 1997. QTL detection and markerassisted selection for complex traits in maize. In: Proceedings 52nd Annual Corn and Sorghum Research Conference. American Seed Trade Association, Washington, DC, pp. 44-53.

    Google Scholar 

  • Phillips, R.L., Kim, T.S., Kaeppler, S.M., Parentoni, S.N., Shaver, D.L., Stucker, R.I. and Openshaw, S. J. 1992. Genetic dissection of maturity using RFLPs. In: Proceedings 47th Annual Corn and Sorghum Research Conference. American Seed Trade Association, Washington, DC, pp. 135-150.

    Google Scholar 

  • Price, A.H. and Courtois, B. 1999. Mapping QTLs associated with drought resistance in rice: progress, problems and prospects. Plant Growth Reg. 29: 123-133.

    Google Scholar 

  • Price, A.H. and Tomos, A.D. 1997. Genetic dissection of root growth in rice (Oryza sativa L.). II. Mapping quantitative trait loci using molecular markers. Theor. Appl. Genet. 95: 143-152.

    Google Scholar 

  • Price, A.H., Steele, K.A., Moore, B.J., Barraclough, P.B. and Clark, L.J. 2000. A combined RFLP and AFLP linkage map of upland rice (Oryza sativa L.) used to identify QTLs for root-penetration ability. Theor. Appl. Genet. 100: 49-56.

    Google Scholar 

  • Quarrie, S.A. 1996. New molecular tools to improve the efficiency of breeding for increased drought resistance. Plant Growth Regul. 20: 167-178.

    Google Scholar 

  • Quarrie, S.A., Laurie, D.A., Zhu, J., Lebreton, C., Semikhodskii, A., Steed, A., Witsenboer, H. and Calestani, C. 1997. QTL analysis to study the association between leaf size and abscisic acid accumulation in droughted rice leaves and comparisons across cereals. Plant Mol. Biol. 35: 155-165.

    Google Scholar 

  • Rahman, H., Boe, A., Wicks, Z.W. and Scholten, G.G. 1988. Diallel analysis for seedling root characteristics in maize. South Dakota Acad. Sci. 67: 19-27.

    Google Scholar 

  • Rahman, H., Wicks, Z.W., Swati, M.S. and Ahmed, K. 1994. Generation mean analysis of seedling root characteristics in maize (Zea mays L.). Maydica 39: 177-181.

    Google Scholar 

  • Ray, J.D., Yu, L., McCouch, S.R., Champoux, M.C., Wang, G. and Nguyen, H. 1996. Mapping quantitative trait loci associated with root penetration ability in rice (Oryza sativa L.). Theor. Appl. Genet. 92: 627-636.

    Google Scholar 

  • Ribaut, J.M., Hoisington, D.A., Deutsch, J.A., Jiang, C. and Gonzáles de León, D. 1996. Identification of quantitative trait loci under drought conditions in tropical maize. I. Flowering parameters and the anthesis-silking interval. Theor. Appl. Genet. 92: 905-914.

    Google Scholar 

  • Ribaut, J.M., Jiang, C., Gonzáles de León, D., Edmeades, G.O. and Hoisington, D.A. 1997. Identification of quantitative trait loci under drought conditions in tropical maize. II. Yield components and marker-assisted selection strategies. Theor. Appl. Genet. 94: 887-896.

    Google Scholar 

  • Robertson, D.S. 1985. A possible technique for isolating genic DNA for quantitative traits in plants. J. Theor. Biol. 117: 1-10.

    Google Scholar 

  • Saghai-Maroof, M.A., Soliman, K.M., Jorgesen, R.A. and Allard, R.W. 1984. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl. Acad. Sci. USA 81: 8014-8018.

    Google Scholar 

  • Salvi, S., Tuberosa, R., Sanguineti, M.C., Landi, P. and Conti, S. 1997. Molecular marker analysis of maize populations divergently selected for abscisic acid concentration in the leaf. Maize Genet. Coop. Newsl. 71: 15-16.

    Google Scholar 

  • Sanguineti, M.C., Giuliani, M.M., Govi, G., Tuberosa, R. and Landi, P. 1998. Root and shoot traits of maize inbred lines grown in the field and in hydroponic culture and their relationships with root lodging. Maydica 43: 211-216.

    Google Scholar 

  • Sanguineti, M.C., Tuberosa, R., Landi, P., Salvi, S., Maccaferri, M., Casarini, E. and Conti, S. 1999. QTL analysis of droughtrelated traits and grain yield in relation to genetic variation for leaf abscisic acid concentration in field-grown maize. J. Exp. Bot. 50: 1289-1297.

    Google Scholar 

  • Sari-Gorla, M., Krajewski, P., Di Fonzo, N., Villa, M. and Frova, C. 1999. Genetic analysis of drought tolerance in maize by molecular markers. II. Plant height and flowering. Theor. Appl. Genet. 99: 289-295.

    Google Scholar 

  • Schön, C.C., Lee, M., Melchinger, A.E., Guthrie, W.D. and Woodman, S.D. 1993. Mapping and characterization of quantitative trait loci affecting resistance against second-generation European corn borer in maize with the aid of RFLPs. Heredity 70: 648-659.

    Google Scholar 

  • Sharp, R.E. 1996. Regulation of plant growth responses to low soil water potentials. Hort. Sci. 31: 36-39.

    Google Scholar 

  • Sharp, P.J., Desai, S. and Gale, M.D. 1988. Isozyme variation and RFLPs at the β-amylase loci in wheat. Theor. Appl. Genet. 97: 103-109.

    Google Scholar 

  • Simko, I., McMurry, S., Yang, H.M., Manschot, A., Davies, P.J. and Ewing, E.E. 1997. Evidence from polygene mapping for a causal relationship between potato tuber dormancy and abscisic acid content. Plant Physiol. 115: 1453-1459.

    Google Scholar 

  • Stam, P. 1993. Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J. 3: 739-744.

    Google Scholar 

  • Stuber, C.W., Edwards, M.D. and Wendel, J.F. 1987. Molecular marker-facilitated investigations of quantitative trait loci in maize. II. Factors influencing yield and its component traits. Crop Sci. 27: 639-648.

    Google Scholar 

  • Tanksley, S.D. 1993. Mapping polygenes. Annu. Rev. Genet. 27: 205-233.

    Google Scholar 

  • Taramino, G. and Tingey, S. 1996. Simple sequence repeats for germplasm analysis and mapping in maize. Genome 39: 277-287.

    Google Scholar 

  • Tuberosa, R., Sanguineti, M.C., Landi, P., Salvi, S., Casarini, E. and Conti, S. 1998. RFLP mapping of quantitative trait loci controlling abscisic acid concentration in leaves of drought-stressed maize (Zea mays L.). Theor. Appl. Genet. 97: 744-755.

    Google Scholar 

  • Tuberosa, R., Sanguineti, M.C., Ribaut, J.M., Landi, P., Giuliani, M., Salvi, S. and Conti, S. 2000. QTL analysis of root characteristics in maize grown in hydroponics as related to field performance under drought conditions. In: International Conference 'Plant & Animal Genome VIII', 9-12 January 2000, San Diego, CA, p. 5.

  • Utz, H.F. and Melchinger, A.E. 1996. PLABQTL. A program for composite interval mapping of QTL. J. Quant. Trait Loci. http://probe.nalusda.gov:800/otherdocs/jqtl.

  • Vos, P., Hogers, R., Bleeker, M., Reijans, M., Van de Lee, T., Hornes, M., Freijters, A., Pot, J., Peleman, J., Kuiper, M. and Zabeau, M. 1995. AFLP: a new technique for DNA fingerprinting. Nucl. Acids Res. 23: 4407-4414.

    Google Scholar 

  • Vuylsteke, M.M., Antonise, R., Bastiaans, R., Senior, E., Stuber, M.L., Melchinger, C.W., Lubberstedt, A.E., Xia, T., Stam, X.C., Zabeau, P. and Kuiper, M. 1999. Two high-density AFLP linkage maps of Zea mays L.: analysis of distribution of AFLP markers. Theor. Appl. Genet. 99: 921-935.

    Google Scholar 

  • Wen, T.J. and Schnable P.S. 1994. Analyses of mutants of three genes that influence root hair development in Zea mays (Gramineae) suggest that root hairs are dispensable. Am. J. Bot. 81: 833-842.

    Google Scholar 

  • Yadav, R., Courtois, B., Huang, N. and McLaren, G. 1997. Mapping genes controlling root morphology and root distribution on a double-haploid population of rice. Theor. Appl. Genet. 94: 619-632.

    Google Scholar 

  • Zeng, Z.B. 1994. Precision mapping of quantitative trait loci. Genetics 136: 1457-1468.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuberosa, R., Sanguineti, M.C., Landi, P. et al. Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. Plant Mol Biol 48, 697–712 (2002). https://doi.org/10.1023/A:1014897607670

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014897607670

Navigation