Skip to main content
Log in

Evolution of chinook salmon (Oncorhynchus tshawytscha) populations in New Zealand: pattern, rate, and process

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Chinook salmon, Oncorhynchus tshawytscha, from the Sacramento River, California, USA were introduced to New Zealand between 1901 and 1907, and colonized most of their present-day range within about 10 years. The New Zealand populations now vary in phenotypic traits typically used to differentiate salmon populations within their natural range: growth in freshwater and at sea, age at maturity, dates of return to fresh water and reproduction, morphology, and reproductive allocation. This paper reviews a large research program designed to determine the relative contributions of phenotypic plasticity and genetic adaptation to this variation, in an effort to understand the processes underlying the natural evolution of new populations. We found strong evidence of trait divergence between populations within at most 30 generations, particularly in freshwater growth rate, date of return, and reproductive output, with plausible adaptive bases for these differences. Importantly, we also demonstrated not only a genetic basis for post-release survival but higher survival, and hence fitness, of a population released from its established site compared to another population released from the same site. We conclude that divergence of salmon in different rivers probably resulted initially from phenotypic plasticity (e.g., habitat-specific growth rates, and effects of upriver migration on ovarian investment). Philopatry (homing to natal streams) combined with rapid evolution of distinct breeding periods to restrict gene flow, facilitating divergence in other traits. We also suggest that in addition to genetic divergence resulting from random founder effects, divergence may also arise during the very early stages of colonization when the original colonists are a non-random, pre-adapted subset of the source population. This ‘favored founders effect’ immediately improves the fitness of the new population. Overall, this research reveals the complex interplay of environmental and genetic controls over behavior, physiology and life history that characterize the early stages of population differentiation, a process that has taken place repeatedly during the history of salmon populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beacham, T.D. & C.B. Murray, 1987. Adaptive variation in body size, age, morphology, egg size, and developmental biology of chum salmon (Oncorhynchus keta) in British Columbia. Can. J. Fish. Aquat. Sci. 44: 244–261.

    Google Scholar 

  • Beacham, T.D. & C.B. Murray, 1989. Variation in developmental biology of sockeye salmon (Oncorhynchus nerka) and chinook salmon (O. tshawytscha) in British Columbia. Can. J. Zool. 67: 2081–2089.

    Google Scholar 

  • Bell, M.A., 2001. Lateral plate evolution in the threespine stickleback: getting nowhere fast. Genetica 112-113: 445–461.

    Google Scholar 

  • Blair, G.R., D.E. Rogers & T.P. Quinn, 1993. Variation in life history characteristics and morphology of sockeye salmon in the Kvichak river system, Bristol Bay, Alaska. Trans. Amer. Fish. Soc. 122: 550–559.

    Google Scholar 

  • Bower, S.M., R.E. Withler & B.E. Riddell, 1995. Genetic variation in resistance to the hemoflagellate Cryptobia salmositica in coho and sockeye salmon. J. Aquat. Anim. Health 7: 185–194.

    Google Scholar 

  • Brannon, E.L., 1972. Mechanisms controlling migration of sockeye salmon fry. Int. Pacific Salmon Comm. Bull. 21: 1–86.

    Google Scholar 

  • Brannon, E.L., 1987. Mechanisms stabilizing salmonid fry emergence timing. Can. Special Publ. Fish. Aquat. Sci. 96: 120–124.

    Google Scholar 

  • Cavalli-Sforza, L.L. & A.W.F. Edwards, 1967. Phylogenetic analysis: models and estimation procedures. Evolution 21: 550–570.

    Google Scholar 

  • Crandall, K.A., O.R.P. Bininda-Emonds, G.M. Mace & R.K. Wayne, 2000. Considering evolutionary processes in conservation biology. TREE 15: 290–295.

    Google Scholar 

  • Einum, S. & I.A. Fleming, 2000. Selection against late emergence and small offspring in Atlantic salmon (Salmo salar). Evolution 54: 628–639.

    Google Scholar 

  • Emery, L., 1981. Range extension of pink salmon (Oncorhynchus gorbuscha) into the lower Great Lakes. Fisheries 6: 7–10.

    Google Scholar 

  • Endler, J.A., 1995. Multiple-trait coevolution and environmental gradients in guppies. TREE 10: 22–29.

    Google Scholar 

  • Fedorenko, A.Y. & B.G. Shepherd, 1986. Review of salmon transplant procedures and suggested transplant guidelines. Can. Tech. Rep. Fish. Aquat. Sci. 1479: 1–144.

    Google Scholar 

  • Foote, C.J., I. Mayer, C.C. Wood, W.C. Clarke & J. Blackburn, 1994. On the developmental pathway to nonanadromy in sockeye salmon, Oncorhynchus nerka. Can. J. Zool. 72: 397–405.

    Google Scholar 

  • Geiger, H.J., W.W. Smoker, L.A. Zhivotovsky & A.J. Gharrett, 1997. Variability of family size and marine survival in pink salmon (Oncorhynchus gorbuscha) has implications for conservation biology and human use. Can. J. Fish. Aquat. Sci. 54: 2684–2690.

    Google Scholar 

  • Gingerich, P.D., 1983. Rates of evolution: effects of time and temporal scaling. Science 222: 159–161.

    Google Scholar 

  • Gingerich, P.D., 1993. Quantification and comparison of evolutionary rates. Amer. J. Sci. 293A: 453–478.

    Google Scholar 

  • Gingerich, P.D., 2001. Rates of evolution on the time scale of the evolutionary process. Genetica 112-113: 127–144.

    Google Scholar 

  • Gíslason, D., M.M. Ferguson, S. SkÚlason & S.S. Snorrason, 1999. Rapid and coupled phenotypic and genetic divergence in Icelandic Arctic char (Salvelinus alpinus). Can. J. Fish. Aquat. Sci. 56: 2229–2234.

    Google Scholar 

  • Godin, J.-G.J., 1990. Diet selection under the risk of predation, pp. 739–769 in Behavioural Mechanisms of Food Selection, Vol. G20, NATO ASI Series edited by R.N. Hughes. Springer-Verlag, Berlin.

    Google Scholar 

  • Groot, C. & L. Margolis (eds), 1991. Pacific Salmon Life Histories. University of British Columbia Press, Vancouver.

    Google Scholar 

  • Hankin, D.G., J.W. Nicholas & T.W. Downey, 1993. Evidence for inheritance of age of maturity in chinook salmon (Oncorhynchus tshawytscha). Can. J. Fish. Aquat. Sci. 50: 347–358.

    Google Scholar 

  • Harache, Y., 1992. Pacific salmon in Atlantic waters. ICESMar. Sci. Symp. 194: 1955–1977.

    Google Scholar 

  • Hard, J.J., A.C. Wertheimer, W.R. Heard & R.M. Martin, 1985. Early male maturity in two stocks of chinook salmon (Oncorhynchus tshawytscha) transplanted to an experimental hatchery in southeastern Alaska. Aquaculture 48: 351–359.

    Google Scholar 

  • Healey, M.C., 1982. Timing and relative intensity of size-selective mortality of juvenile chum salmon (Oncorhynchus keta) during early sea life. Can. J. Fish. Aquat. Sci. 39: 952–957.

    Google Scholar 

  • Healey, M.C., 1991. Life history of chinook salmon (Oncorhynchus tshawytscha), pp. 311–393 in Pacific Salmon Life Histories, edited by C. Groot & L. Margolis. University of British Columbia Press, Vancouver, B.C.

    Google Scholar 

  • Healey, M.C. & W.R. Heard, 1984. Inter-and intra-population variation in the fecundity of chinook salmon (Oncorhynchus tshawytscha) and its relevance to life history theory. Can. J. Fish. Aquat. Sci. 41: 476–483.

    Google Scholar 

  • Heath, D.D., R.H. Devlin, J.W. Heath & G.K. Iwama, 1994. Genetic, environmental and interaction effects on the incidence of jacking in Oncorhynchus tshawytscha (chinook salmon). Heredity 72: 146–154.

    Google Scholar 

  • Heath, D.H., G.K. Iwama & R.H. Devlin, 1994. DNA fingerprinting used to test for family effects on precocious sexual maturation in two populations of Oncorhynchus tshawytscha (chinook salmon). Heredity 73: 616–624.

    Google Scholar 

  • Henderson, M.A. & A.J. Cass, 1991. Effect of smolt size on smoltto-adult survival for Chilko Lake sockeye salmon (Oncorhynchus nerka). Can. J. Fish. Aquat. Sci. 48: 988–994.

    Google Scholar 

  • Hendry, A.P., 2001. Adaptive divergence and the evolution of reproductive isolation: an empirical demonstration in the using introduced sockeye salmon. Genetica 112-113: 515–534.

    Google Scholar 

  • Hendry, A.P. & M.T. Kinnison, 1999. The pace of modern life: measuring rates of contemporary micro-evolution. Evolution 53: 1637–1653.

    Google Scholar 

  • Hendry, A.P. & T.P. Quinn, 1997. Variation in adult life history and morphology among Lake Washington sockeye salmon (Oncorhynchus nerka) populations, in relation to habitat features and ancestral affinities. Can. J. Fish. Aquat. Sci. 54: 75–84.

    Google Scholar 

  • Hendry, A.P., J.K. Wenburg, P. Bentzen, E.C. Volk & T.P. Quinn, 2000. Rapid evolution of reproductive isolation in the wild: evidence from introduced salmon. Science 290: 516–518.

    Google Scholar 

  • Hoar, W.S., 1976. Smolt transformation: evolution, behavior, and physiology. J. Fish. Res. Board Can. 33: 1234–1252.

    Google Scholar 

  • Holtby, L.B., B.C. Anderson & R.K. Kadowaki, 1990. Importance of smolt size and early ocean growth to interannual variability in marine survival of coho salmon (Oncorhynchus kisutch). Can. J. Fish. Aquat. Sci. 47: 2181–2194.

    Google Scholar 

  • Johnson, J.B. & M.C. Belk, 2001. Predation environment predicts divergent life-history phenotypes among populations of the livebearing fish Brachyrhaphis rhabdophora. Oecologia 126: 142–149.

    Google Scholar 

  • Jónasson, J., 1996. Selection experiments on Atlantic salmon ranching. II. Variation among release sites and strains for return rate, body weight and ratio of grilse to total return. Aquaculture 144: 277–294.

    Google Scholar 

  • Jonsson, N., B. Jonsson & I.A. Fleming, 1996. Does early growth cause a phenotypically plastic response in egg production of Atlantic salmon? Funct. Ecol. 10: 89–96.

    Google Scholar 

  • Kinnison, M.T., 1999. Life history divergence and population structure of New Zealand chinook salmon: a study in contemporary microevolution. Ph.D. Dissertation, University of Washington, Seattle.

    Google Scholar 

  • Kinnison, M.T. & A.P. Hendry, 2001. The pace of modern life II: from rates to pattern and process. Genetica 112-113: 145–164.

    Google Scholar 

  • Kinnison, M.T., M.J. Unwin, N. Boustead & T.P. Quinn, 1998a. Population specific variation in body dimensions of adult chinook salmon (Oncorhynchus tshawytscha) from New Zealand and their source population, 90 years after their introduction. Can. J. Fish. Aquat. Sci. 55: 554–563.

    Google Scholar 

  • Kinnison, M.T., M.J. Unwin, W.K. Hershberger & T.P. Quinn, 1998b. Egg size, fecundity and early development rate of two New Zealand chinook salmon (Oncorhynchus tshawytscha) populations, with a comparison to their ancestral Sacramento River population. Can. J. Fish. Aquat. Sci. 55: 1946–1953.

    Google Scholar 

  • Kinnison, M.T., M.J. Unwin & T.P. Quinn, 1998. Growth and salinity tolerance of underyearling chinook salmon (Oncorhynchus tshawytscha) from two introduced New Zealand populations. Can. J. Zool. 76: 2219–2226.

    Google Scholar 

  • Kinnison, M.T., M.J. Unwin, A.P. Hendry & T.P. Quinn, 2001. Migratory costs and the evolution of egg size and number allocation in new and indigenous salmon populations. Evolution 55: 1656–1667.

    Google Scholar 

  • Kreeger, K.Y., 1995. Differences in the onset of salinity tolerance between juvenile chinook salmon from two coastal Oregon river systems. Can. J. Fish. Aquat. Sci. 52: 623–630.

    Google Scholar 

  • Losos, J.B., K.I. Warheit & T.W. Schoener, 1997. Adaptive differentiation following experimental island colonization in Anolis lizards. Nature 387: 70–73.

    Google Scholar 

  • Marschall, E.A., T.P. Quinn, D.A. Roff, J.A. Hutchings, N.B. Metcalfe, T.A. Bakke, R.L. Saunders & N.L. Poff, 1998. A framework for understanding Atlantic salmon (Salmo salar) life history. Can. J. Fish. Aquat. Sci. 55(Suppl. 1): 48–58.

    Google Scholar 

  • McDowall, R.M., 1988. Diadromy in Fishes. Timber Press, Portland, Oregon.

    Google Scholar 

  • McDowall, R.M., 1994. The origins of New Zealand' chinook salmon, Oncorhynchus tshawytscha. Mar. Fish. Rev. 56: 1–7.

    Google Scholar 

  • McPhail, J.D., 1996. The origin and speciation of Oncorhynchus revisited, pp. 29–38 in Pacific Salmon and their Ecosystems, edited by D.J. Stouder, P.A. Bisson & R.J. Naiman. Chapman and Hall, New York.

    Google Scholar 

  • Milner, A.M, E.E. Knudsen, C. Soiseth, A.L. Robertson, D. Schell, I.T. Phillips & K Magnusson, 2000. Colonization and development of stream communities across a 200–year gradient in Glacier Bay National Park, Alaska, U.S.A. Can. J. Fish. Aquat. Sci. 57: 2319–2335.

    Google Scholar 

  • Parrott, A.W., 1971. The age and rate of growth of quinnat salmon (Oncorhynchus tshawytscha (Walbaum)) in New Zealand. N.Z. Mar. Dept. Fish. Tech. Rep. 63.

  • Pascual, M.A. & T.P. Quinn, 1994. Geographical patterns of straying of fall chinook salmon (Oncorhynchus tshawytscha) from Columbia river (U.S.A.) hatcheries. Aquacult. Fish. Manage. 25 (Suppl. 2): 17–30.

    Google Scholar 

  • Quinn, T.P., 1980. Evidence for celestial and magnetic compass orientation in lake migrating sockeye salmon fry. J. Comp. Physiol. 137: 243–248.

    Google Scholar 

  • Quinn, T.P., 1993. A review of homing and straying of wild and hatchery-produced salmon. Fish. Res. 18: 19–29.

    Google Scholar 

  • Quinn, T.P., 1999. Revisiting the stock concept in Pacific salmon: insights from Alaska and New Zealand. Northwest Sci. 73: 312–324.

    Google Scholar 

  • Quinn, T.P. & D.J. Adams, 1996. Environmental changes affecting the migratory timing of American shad and sockeye salmon. Ecology 77: 1151–1162.

    Google Scholar 

  • Quinn, T.P. & S. Bloomberg, 1992. Fecundity of chinook salmon (Oncorhynchus tshawytscha) from theWaitaki and Rakaia rivers, New Zealand. N.Z. J. Mar. Freshw. Res. 26: 429–434.

    Google Scholar 

  • Quinn, T.P., E. Graynoth, C.C. Wood & C.J. Foote, 1998. Genotypic and phenotypic divergence of sockeye salmon in New Zealand from their ancestral British Columbia populations. Trans. Amer. Fish. Soc. 127: 517–534.

    Google Scholar 

  • Quinn, T.P., A.P. Hendry & L.A. Wetzel, 1995. The influence of life history trade-offs and the size of incubation gravels on egg size variation in sockeye salmon (Oncorhynchus nerka). Oikos 74: 425–438.

    Google Scholar 

  • Quinn, T.P., J.L. Nielsen, C. Gan, M.J. Unwin, R. Wilmot, C. Guthrie & F.M. Utter, 1996. Origin and genetic structure of chinook salmon, Oncorhynchus tshawytscha, transplanted from California to New Zealand: allozyme and mtDNA evidence. Fish. Bull. 94: 506–521.

    Google Scholar 

  • Quinn, T.P. & M.J. Unwin, 1993. Variation in life history patterns among New Zealand chinook salmon (Oncorhynchus tshawytscha) populations. Can. J. Fish. Aquat. Sci. 50: 1414–1421.

    Google Scholar 

  • Quinn, T.P, M.J. Unwin & M.T. Kinnison, 2000. Evolution of temporal isolation in the wild: genetic divergence in timing of migration and breeding in introduced populations of chinook salmon. Evolution 54: 1372–1385.

    Google Scholar 

  • Reimchen, T.E., 1994. Predators and morphological evolution in threespine stickleback, pp. 240–276 in The Evolutionary Biology of the Threespine Stickleback, edited by M.A. Bell & S.A. Foster. Oxford University Press, Oxford, England.

    Google Scholar 

  • Reisenbichler, R.R., 1988. Relation between distance transferred from natal stream and recovery rate for hatchery coho salmon. N. Amer. J. Fish. Manage. 8: 172–174.

    Google Scholar 

  • Reznick, D.N., H. Bryga & J.E. Endler, 1990. Experimentally induced life-history evolution in a natural population. Nature 346: 357–359.

    Google Scholar 

  • Reznick, D.N., F.H. Shaw, F.H. Rodd & R.G. Shaw, 1997. Evaluation of the rate of evolution in natural populations of guppies (Poecilia reticulata). Science 275: 1934–1937.

    Google Scholar 

  • Ricker, W.E., 1972. Hereditary and environmental factors affecting certain salmonid populations, pp. 19–160 in The Stock Concept in Pacific Salmon, edited by R.C. Simon & P.A. Larkin. H.R. MacMillan Lectures in Fisheries, University of British Columbia, Vancouver, B.C.

    Google Scholar 

  • Roni, P. & T.P. Quinn, 1995. Geographic variation in size and age of North American chinook salmon (Oncorhynchus tshawytscha). N. Amer. J. Fish. Manage. 15: 325–345.

    Google Scholar 

  • Schluter, D., 1996. Adaptive radiation along genetic lines of least resistance. Evolution 50: 1766–1774.

    Google Scholar 

  • Schluter, D., 2000. The Ecology of Adaptive Radiation. Oxford University Press, Oxford, U.K.

    Google Scholar 

  • Siitonen, L. & G.A.E. Gall, 1989. Response to selection for early spawning date in rainbow trout, Salmo gairdneri. Aquaculture 78: 153–161.

    Google Scholar 

  • Silverstein, J.T. & W.K. Hershberger, 1992. Precocious maturation in coho salmon (Oncorhynchus kisutch): estimation of the additive genetic variance. J. Hered. 83: 282–286.

    Google Scholar 

  • SkÚlason, S., S.S. Snorrason, D.L.G. Noakes & M.M. Ferguson, 1996. Genetic basis of life history variations among sympatric morphs of Arctic char, Salvelinus alpinus. Can. J. Fish. Aquat. Sci. 53: 1807–1813.

    Google Scholar 

  • Smith, T.B. & S. SkÚlason, 1996. Evolutionary significance of resource polymorphisms in fishes, amphibians, and birds. Ann. Rev. Ecol. Syst. 27: 111–133.

    Google Scholar 

  • Smoker, W.W., A.J. Gharrett & M.S. Stekoll, 1998. Genetic variation of return date in a population of pink salmon: a consequence of fluctuating environment and dispersive selection? Alaska Fish. Res. Bull. 5: 46–54.

    Google Scholar 

  • Stearns, S.C., 1983a. A natural experiment in life-history evolution: field data on the introduction of mosquitofish (Gambusia affinis) to Hawaii. Evolution 37: 601–617.

    Google Scholar 

  • Stearns, S.C., 1983b. The genetic basis of differences in life-history traits among six populations of mosquitofish (Gambusia affinis) that shared ancestors in 1905. Evolution 37: 618–627.

    Google Scholar 

  • Tallman, R.F., 1986. Genetic differentiation among seasonally distinct spawning populations of chum salmon, Oncorhynchus keta. Aquaculture 57: 211–217.

    Google Scholar 

  • Taylor, E.B., 1990a. Phenotypic correlates of life-history variation in juvenile chinook salmon, Oncorhynchus tshawytscha. J. Anim. Ecol. 59: 455–468.

    Google Scholar 

  • Taylor, E.B., 1990b. Environmental correlates of life-history variation in juvenile chinook salmon, Oncorhynchus tshawytscha (Walbaum). J. Fish Biol. 37: 1–17.

    Google Scholar 

  • Taylor, E.B., 1991. A review of local adaptation in Salmonidae, with particular reference to Pacific and Atlantic salmon. Aquaculture 98: 185–207.

    Google Scholar 

  • Taylor, E.B., 1999. Species pairs of north temperate freshwater fishes: evolution, taxonomy, and conservation. Rev. Fish Biol. Fish. 9: 299–324.

    Google Scholar 

  • Tipping, J.M. & H.L. Blankenship, 1993. Effect of condition factor at release on smolt-to-adult survival of hatchery sea-run cutthroat trout. Prog. Fish-Cult. 55: 184–186.

    Google Scholar 

  • Unwin, M.J., 1997. Fry-to-adult survival of natural and hatcheryproduced chinook salmon (Oncorhynchus tshawytscha) from a common origin. Can. J. Fish. Aquat. Sci. 54: 1246–1254.

    Google Scholar 

  • Unwin, M.J., M.T. Kinnison & T.P. Quinn, 1999. Exceptions to semelparity: postmaturation survival, morphology, and energetics of male chinook salmon (Oncorhynchus tshawytscha). Can. J. Fish. Aquat. Sci. 56: 1172–1181.

    Google Scholar 

  • Unwin, M.J. & D.H. Lucas, 1993. Scale characteristics of wild and hatchery chinook salmon (Oncorhynchus tshawytscha) in the Rakaia river, New Zealand, and their use in stock identification. Can. J. Fish. Aquat. Sci. 50: 2475–2484.

    Google Scholar 

  • Unwin, M.J. & T.P. Quinn, 1993. Homing and straying patterns of chinook salmon (Oncorhynchus tshawytscha) from a New Zealand hatchery: spatial distribution of strays and effects of release date. Can. J. Fish. Aquat. Sci. 50: 1168–1175.

    Google Scholar 

  • Unwin, M.J., T.P. Quinn, M.T. Kinnison & N.C. Boustead, 2000. Divergence in juvenile growth and life history in two recently colonized and partially isolated chinook salmon populations. J. Fish Biol. 57: 943–960.

    Google Scholar 

  • Waples, R.S., 1995. Evolutionarily significant units and the conservation of biological diversity under the Endangered Species Act. Amer. Fish. Soc. Symp. 17: 8–27.

    Google Scholar 

  • Ward, B.R., P.A. Slaney, A.R. Facchin & R.W. Land, 1989. Sizebased survival in steelhead trout (Oncorhynchus mykiss): backcalculated lengths from adults' scales compared to migrating smolts at the Keogh river, British Columbia. Can. J. Fish. Aquat. Sci. 46: 1853–1858.

    Google Scholar 

  • Webb, J.H. & H.A. McLay, 1996. Variations in the time of spawning of Atlantic salmon (Salmo salar) and its relationship to temperature in the Aberdeenshire Dee, Scotland. Can. J. Fish. Aquat. Sci. 53: 2739–2744.

    Google Scholar 

  • Weir, B.S. & C.C. Cockerham, 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–1370.

    Google Scholar 

  • Winkelman, A.M. & Peterson, R.G, 1994. Heritabilities, dominance variation, common environmental effects and genotype by environment interactions for weight and length in chinook salmon. Aquaculture 125: 17–30.

    Google Scholar 

  • Withler, F.C., 1982. Transplanting Pacific salmon. Can. Tech. Rep. Fish. Aquat. Sci. 1079: 1–27.

    Google Scholar 

  • Wood, C.C., 1995. Life history variation and population structure in sockeye salmon. Amer. Fish. Soc. Symp. 17: 195–216.

    Google Scholar 

  • Wood, C.C. & C.J. Foote, 1990. Genetic differences in the early development and growth of sympatric sockeye salmon and kokanee (Oncorhynchus nerka), and their hybrids. Can. J. Fish. Aquat. Sci. 47: 2250–2260.

    Google Scholar 

  • Wood, C.C. & C.J. Foote, 1996. Evidence for sympatric genetic divergence of anadromous and nonanadromous morphs of sockeye salmon (Oncorhynchus nerka). Evolution 50: 1265–1279.

    Google Scholar 

  • Yamamoto, S., K. Morita & A. Goto, 1999. Marine growth and survival of white-spotted charr, Salvelinus leucomaenis, in relation to smolt size. Ichthyol. Res. 46: 85–92.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quinn, T.P., Kinnison, M.T. & Unwin, M.J. Evolution of chinook salmon (Oncorhynchus tshawytscha) populations in New Zealand: pattern, rate, and process. Genetica 112, 493–513 (2001). https://doi.org/10.1023/A:1013348024063

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013348024063

Navigation