Skip to main content
Log in

Automated prediction of 15N, 13Cα, 13Cβ and 13C′ chemical shifts in proteins using a density functional database

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

A database of peptide chemical shifts, computed at the density functional level, has been used to develop an algorithm for prediction of 15N and 13C shifts in proteins from their structure; the method is incorporated into a program called SHIFTS (version 4.0). The database was built from the calculated chemical shift patterns of 1335 peptides whose backbone torsion angles are limited to areas of the Ramachandran map around helical and sheet configurations. For each tripeptide in these regions of regular secondary structure (which constitute about 40% of residues in globular proteins) SHIFTS also consults the database for information about sidechain torsion angle effects for the residue of interest and for the preceding residue, and estimates hydrogen bonding effects through an empirical formula that is also based on density functional calculations on peptides. The program optionally searches for alternate side-chain torsion angles that could significantly improve agreement between calculated and observed shifts. The application of the program on 20 proteins shows good consistency with experimental data, with correlation coefficients of 0.92, 0.98, 0.99 and 0.90 and r.m.s. deviations of 1.94, 0.97, 1.05, and 1.08 ppm for 15N, 13Cα, 13Cβ and 13C′, respectively. Reference shifts fit to protein data are in good agreement with `random-coil' values derived from experimental measurements on peptides. This prediction algorithm should be helpful in NMR assignment, crystal and solution structure comparison, and structure refinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ando, I., Kameda, T., Asakawa, N., Kuroki, S. and Kurosu, H. (1998) J. Mol. Struct., 441, 213-230.

    Google Scholar 

  • Becke, A.D. (1993) J. Chem. Phys., 98, 5648-5652.

    Google Scholar 

  • Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, F., Bryce, M.D., Rogers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M. (1977) J. Mol. Biol., 112, 535-542.

    Google Scholar 

  • Cornilescu, G., Delaglio, F. and Bax, A. (1999) J. Biomol. NMR 13, 289-302.

    Google Scholar 

  • Cornilescu, G., Marquardt, J.L., Ottiger, M. and Bax, A. (1998) J. Am. Chem. Soc., 120, 6836.

    Google Scholar 

  • de Dios, A.C. (1996) Prog. NMR Spectrosc., 97, 229-278.

    Google Scholar 

  • de Dios, A.C., Pearson, J.G. and Oldfield, E. (1993) Science, 260, 1491-1496.

    Google Scholar 

  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Gill, P.M.W., Johnson, B.G., Robb, M.A., Cheeseman, J.R., Keith, T., Petersson, G.A., Montgomery, J.A., Raghavachari, K., Al-Laham, M.A., Zakrzewski, V.G., Ortiz, J.V., Foresman, J.B., Cioslowski, J., Stefanov, B.B., Nanayakkara, A., Challacombe, M., Peng, C.Y., Ayala, P.Y., Chen,W., Wong, M.W., Andres, J.L., Replogle, E.S., Gomperts, R., Martin, R.L., Fox, D.J., Binkley, J.S., Defrees, D.J., Baker, J., Stewart, J.P., Head-Gordon, M., Gonzalez, C. and Pople, J.A. (1998) Gaussian 98, Reversion A.6, Gaussian, Inc., Pittsburgh, PA.

    Google Scholar 

  • Gronwald, W., Boyko, R.F., Sönnichsen, R.D., Wishart, D.S. and Sykes, B.D. (1997) J. Biomol. NMR, 10, 165-179.

    Google Scholar 

  • Herranz, J., Gonzalez, C., Rico, M., Nieto, J.L., Santoro, J., Jimenez, M.A., Bruix, M., Neita, J.L. and Blanco, F.J. (1992) Magn. Reson. Chem., 30, 1012-1018.

    Google Scholar 

  • Iwadate, M., Asakura, T. and Williamson, M.P. (1999) J. Biomol. NMR, 13, 199-211.

    Google Scholar 

  • Lee, C., Yang, W. and Parr, R. (1988) Phys. Rev., B37, 785-789.

    Google Scholar 

  • Macke, T and Case, D.A. (1998) In Molecular Modeling of Nucleic Acids, N.B. Leontis and J. SantaLucia (Eds.), American Chemical Society, Washington, pp. 379-393.

    Google Scholar 

  • Miehlich, B., Savin, A., Stoll, H. and Preuss, H. (1989) Chem. Phys. Lett., 157, 200.

    Google Scholar 

  • Ösapay, K. and Case, D.A. (1991) J. Am. Chem. Soc., 113, 9436-9444.

    Google Scholar 

  • Ösapay, K. and Case, D.A. (1994) J. Biomol. NMR, 4, 215-230.

    Google Scholar 

  • Osawa, M., Swindlls, M.B., Tanikawa, J., Tanaka, T., Mase, T., Furuya, T. and Ikura, M. (1998) J. Mol. Biol., 276, 165-176.

    Google Scholar 

  • Pearson, J.G., Le, H., Sanders, L.K., Godbout, N., Havlin, R.H. and Oldfield, E. (1997) J. Am. Chem. Soc., 119, 11941-11950.

    Google Scholar 

  • Pople, J.A., Head-Gordon, M., Fox, D. J., Raghavachari, K. and Curtiss, L.A. (1989) J. Chem. Phys., 93, 2537.

    Google Scholar 

  • Ramage, R., Green, J., Muir, T.W., Ogunjobi, O.M., Love, S. and Shaw, K. (1994) Biochem. J., 299, 151.

    Google Scholar 

  • Schwarzinger, S., Kroon, G.J.A, Foss, T.R., Chung, J., Wright, P.E. and Dyson, H.J. (2000) J. Biomol. NMR, 18, 43-48.

    Google Scholar 

  • Seavey, B., Farr, E.A., Westler, W.M. and Markley, J.A. (1991) J.Biomol. NMR, 1, 217-236.

    Google Scholar 

  • Sitkoff, D. and Case, D.A. (1997) J. Am. Chem. Soc., 119, 12262-12273.

    Google Scholar 

  • Spera, S. and Bax, A. (1991) J. Am. Chem. Soc., 113, 5490-5492.

    Google Scholar 

  • Szilágyi, L. (1995) Prog. NMR Spectrosc., 27, 325-443.

    Google Scholar 

  • Szilágyi, L. and Jardetzky, O. (1989) J. Magn. Reson., 83, 441.

    Google Scholar 

  • Vijay-Kumar, S., Bugg, C.E. and Cook, W.J. (1987) J. Mol. Biol., 194, 531.

    Google Scholar 

  • Williamson, M.P. and Asakura, T. (1993) J. Magn. Reson., B101, 63-71.

    Google Scholar 

  • Williamson, M.P., Asakura, T., Nakamura, E. and Demura, M. (1992) J. Biomol. NMR, 2, 83-98.

    Google Scholar 

  • Wishart, D.S., Sykes, B.D. and Richards, F.M. (1991) J. Mol. Biol., 222, 311.

    Google Scholar 

  • Wishart, D.S., Watson, M.S., Boyko, R.F. and Sykes, B.D. (1997) J. Biomol. NMR, 10, 329-336.

    Google Scholar 

  • Wolinski, K., Hilton, J.F. and Pulay, P. (1990) J. Am. Chem. Soc., 112, 8251.

    Google Scholar 

  • Xu, X.-P and Case, D.A. (2001) submitted.

  • Yamazaki, T., Hinck, A.P., Wang, Y.-X., Nicholson, L.K., Torchia, D.A., Wingfield, P.T., Stahl, S.J., Kaufman, J.D., Chang, C.-H., Domaille, P.J. and Lam, P.Y.S. (1996) Prot. Sci., 5, 495-506.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, XP., Case, D.A. Automated prediction of 15N, 13Cα, 13Cβ and 13C′ chemical shifts in proteins using a density functional database. J Biomol NMR 21, 321–333 (2001). https://doi.org/10.1023/A:1013324104681

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013324104681

Keywords

Navigation