Skip to main content
Log in

pH-Metric logP 10. Determination of Liposomal Membrane-Water Partition Coefficients of lonizable Drugs

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To investigate a novel approach for the determination of liposomal membrane-water partition coefficients and lipophilicity profiles of ionizable drugs.

Methods. The measurements were performed by using a pH-metric technique in a system consisting of dioleylphosphatidylcholine (DOPC) unilamellar vesicles in 0.15 M KC1 at 25°C. The DOPC unilamellar vesicle suspension was prepared via an extrusion process.

Results. The liposomal membrane-water partition coefficients of eight ionizable drugs: ibuprofen, diclofenac, 5-phenylvaleric acid, warfarin, propranolol, lidocaine, tetracaine and procaine were determined and the values for neutral and ionized species were found to be in the ranges of approximately 4.5 to 2.4 and 2.6 to 0.8 logarithmic units, respectively.

Conclusions. It has been shown that the liposomal membrane-water partition coefficients as derived from the pH-metric technique are consistent with those obtained from alternative methods such as ultrafiltration and dialysis. It was found that in liposome system, partitioning of the ionized species is significant and is influenced by electrostatic interaction with the membranes. We have demonstrated that the pH-metric technique is an efficient and accurate way to determine the liposomal membrane-water partition coefficients of ionizable substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. U. Hacksell. Structural and Physícochemical Factors in Drug Action. In P. Krogsgaard-Larsen, T. Liljefors and U. Madsen (eds.), A Text Book of Drug Design and Development, Harwood Academic Publisher, Amsterdam, 1996, pp. 35–59.

    Google Scholar 

  2. J. J. Kaufman, N. M. Semo, and W. S. Koski. J. Med. Chem. 18:647–655 (1975).

    Google Scholar 

  3. A. Leo, C. Hansch, and D. Elkins. Chem. Rev. 71:525–616 (1971).

    Google Scholar 

  4. J. K. Seydel and K. J. Schaper. In M. Rowland and G. T. Tucker (eds.), Pharmacokinetics: Theory and Methodology; Pergamon Press, Oxford, 1986; pp. 331–366.

    Google Scholar 

  5. U. Hellwich and R. Schubert. Biochem. Pharmacol. 49:511–517 (1995).

    Google Scholar 

  6. J. Miyazaki, K. Hideg, and D. Marsh. Biochim. Biophys. Acta 1103:62–68 (1992).

    Google Scholar 

  7. R. P. Austin, A. M. Davis, and C. N. Manners. J. Pharm. Sci. 84:1180–1183 (1995).

    Google Scholar 

  8. G. Schwarz. Biophys. Chem. 58:67–73 (1996).

    Google Scholar 

  9. M. Foradada and J. Estelrich. Int. J. Pharm. 124:261–269 (1995).

    Google Scholar 

  10. M. R. Wenk, A. Fahr, R. Reszka, and J. Seelig. J. Pharm. Sci. 85:228–231 (1996).

    Google Scholar 

  11. J. A. Rogers and Y. W. Choi. Pharm. Res. 10:913–917 (1993).

    Google Scholar 

  12. S. Ong, H. Liu, X. Qiu, G. Bhat, and C. Pidgeon. Anal. Chem. 67:755–762 (1995).

    Google Scholar 

  13. C. Pidgeon, S. Ong, H. Liu, X. Qiu, M. Pidgeon, A. H. Dantzig, J. Munroe, J. Hornback, J. S. Kasher, L. Glunz, and T. Szczerba. J. Med. Chem. 38:590–594 (1995).

    Google Scholar 

  14. J. Formelova, A. Breier, P. Gemeiner, and L. Kurillova. Coll. Czech. Chem. Comm. 56:712–717 (1991).

    Google Scholar 

  15. W. N. Kuhnvelten. Eur. J. Biochem. 197:381–390 (1991).

    Google Scholar 

  16. G. M. Pauletti and H. Wunderli-Allenspach. Eur. J. Pharm. Sci. 1:273–282 (1994).

    Google Scholar 

  17. A. Avdeef. Quant. Struct.—Act. Relat. 11:510–517 (1992).

    Google Scholar 

  18. A. Avdeef. J. Pharm. Sci. 82:183–190 (1993).

    Google Scholar 

  19. A. Avdeef, J. E. A. Comer and S. J. Thomson. Anal. Chem. 65:42–49 (1993).

    Google Scholar 

  20. B. Slater, A. McCormack, A. Avdeef, and J. E. A. Comer. J. Pharm. Sci. 83:1280–1283 (1994).

    Google Scholar 

  21. K. Takács-Novák, A. Avdeef, and K. J. Box. J. Pharm. Biomed. Anal. 12:1369–1377 (1994).

    Google Scholar 

  22. A. Avdeef, K. J. Box, and K. Takács-Nováks. J. Pharm. Sci. 84:523–529 (1995).

    Google Scholar 

  23. A. Avdeef, D. A. Barrett, P. N. Shaw, R. D. Knaggs, and S. S. Davis. J. Med. Chem. 39:4377–4381 (1996).

    Google Scholar 

  24. A. Avdeef. Assessment of distribution-pH profiles. In V. Pliska, B. Testa and H. van de Waterbeemd (eds.), Lipophilicity in Drug Action and Toxicology, VCH, Weinhem, 1996, pp. 109–137.

    Google Scholar 

  25. K. Takács-Novák and A. Avdeef. J. Pharm. Biomed. Anal. 14:1405–1413 (1996).

    Google Scholar 

  26. M. J. Hope, M. B. Bally, G. Webb, and P. R. Cullis. Biochim. Biophys. Acta 812:55–65 (1985).

    Google Scholar 

  27. L.D. Mayer, M. J. Hope, and P. R. Cullis. Biochim. Biophys. Acta 858:161–168 (1986).

    Google Scholar 

  28. A. Avdeef and J. J. Bucher. Anal. Chem. 50:2137–2142 (1987).

    Google Scholar 

  29. C. Ottiger and H. Wunderli-Allenspach. Partition behaviour of acids and bases in a phosphatidylcholine liposome/buffer equilibrium dialysis system. Eur. J. Pharm. Sci. (in press).

  30. Y. Boulanger, S. Schreier, L. C. Leitch, and I. C. P. Smith. Can. J. Biochem. 58:986–995 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avdeef, A., Box, K.J., Comer, J.E.A. et al. pH-Metric logP 10. Determination of Liposomal Membrane-Water Partition Coefficients of lonizable Drugs. Pharm Res 15, 209–215 (1998). https://doi.org/10.1023/A:1011954332221

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011954332221

Navigation