Skip to main content
Log in

Drug Targeting by Polyalkylcyanoacrylate Nanoparticles Is Not Efficient Against Persistent Salmonella

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. We have investigated the efficacy of colistin and ciprofloxacin, free or bound to polyalkylcyanoacrylate nanoparticles, for the targeting and eradication of Salmonella persisting in the organs of the mononuclear phagocyte system.

Methods. A model of persistent S. typhimurium infection was developed in C57BL/6 mice using IV inoculation of the plasmid-cured strain C53.

Results. In vivo and ex vivoexperiments showed that the persisting bacteria seem to evolve to a nongrowing state during experimental salmonellosis. In vivo treatment with free or nanoparticle-bound colistin did not significantly reduce the number of viable Salmonella C53, either in the liver or the spleen of infected mice. In contrast, in vivo treatment with ciprofloxacin led to a significant decrease of bacterial counts in the liver whatever the stage of infection and the form used. However, none of the treatments were able to sterilize the spleen or the liver. In ex vivo experiments, colistin was only active against bacteria recovered during the early phase of infection, whereas ciprofloxacin exerted its activity at all times postinfection.

Conclusions. We suggest that the micro-environment in which the bacterial cells persist in vivo probably causes dramatic changes in their susceptibility to antimicrobial agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Couvreur, E. Fattal, and A. Andremont. Liposomes and nanoparticles in the treatment of intracellular bacterial infections. Pharm. Res. 8:1079–1086 (1991).

    Google Scholar 

  2. E. Fattal, M. Youssef, P. Couvreur, and A. Andremont. Treatment of experimental salmonellosis in mice with ampicillin-bound nanoparticles. Antimicrob. Agents Chemother. 33:1540–1543 (1989).

    Google Scholar 

  3. E. Fattal, J. Rojas, M. Youssef, P. Couvreur, and A. Andremont. Liposome-entrapped ampicillin in the treatment of experimental murine listeriosis and salmonellosis. Antimicrob. Agents Chemother. 35:770–772 (1991).

    Google Scholar 

  4. D. R. Storm, K. S. Rosenthal, and P. E. Swanson. Polymyxin and related peptide antibiotics. Ann. Rev. Bioch. 46:723–763 (1977).

    Google Scholar 

  5. B. Becq-Giraudon. Cyclic polypeptides. Sem. Hôp. Paris. 61:2350–2362 (1985).

    Google Scholar 

  6. M. Vaara and T. Vaara. Outer membrane permeability barrier disruption by polymyxin in polymyxin-susceptible and resistant Salmonella typhimurium. Antimicrob. Agents Chemother. 19:578–583 (1981).

    Google Scholar 

  7. M.-E. Page, H. Pinto-Alphandary, E. Chachaty, A. Andremont, and P. Couvreur. Entrapment of Colistin into polyhexylcyanoacrylate nanoparticles: preparation, drug release and tissue distribution in mice. S.T.P. Pharma Sciences. 6:298–301 (1996).

    Google Scholar 

  8. R. H. K. Eng, F. T. Padberg, S. M. Smith, E. N. Tau, and C. E. Cherubin. Bactericidal effect of antibiotics on slowly growing and nongrowing bacteria. Antimicrob. Agents Chemother. 35:1824–1828 (1991).

    Google Scholar 

  9. H. J. Zeiler and K. Grohe. The in vitro and in vivo activity of ciprofloxacin. Eur. J. Clin. Microbiol. 3:339–343 (1984).

    Google Scholar 

  10. H. J. Zeiler. Evaluation of the in vitro bactericidal action of ciprofloxacin on cells of Escherichia coli in the logarithmic and stationary phases of growth. Antimicrob. Agents Chemother. 28:524–527 (1985).

    Google Scholar 

  11. H. J. Zeiler and R. Endermann. Effect of ciprofloxacin on stationary bacteria studied in vivo in a murine granuloma pouch model infected with Escherichia coli. Chemotherapy 32:468–472 (1986).

    Google Scholar 

  12. H. J. Zeiler and W. H. Voigt. Efficacy of ciprofloxacin in stationary-phase bacteria in vivo. Am. J. Med. 82:87–90 (1987).

    Google Scholar 

  13. P. Pardon, M. Y. Popoff, C. Coynault, J. Marly, and I. Miras. Virulence-associated plasmids of Salmonella serovar typhimurium in experimental murine infection. Ann. Inst. Pasteur/Microbiol. 137B:47–60 (1986).

    Google Scholar 

  14. P. A. Gulig and T. J. Doyle. The Salmonella typhimurium virulence plasmid increases the growth rate of Salmonellae in mice. Infect. Immun. 61:504–511 (1993).

    Google Scholar 

  15. National Committee for Clinical Laboratory Standards. Methods for determining bactericidal activity of antimicrobial agents. Document M26-P. National Committee for Clinical Laboratory Standards, Villanova, Pa (1990).

    Google Scholar 

  16. P. Couvreur, M. Roland, and P. Speiser. Biodegradable submicroscopic particles containing a biologically active substance and compositions containing them. U.S. Patent No 4.329.332 (1982).

  17. S. Henry-Michelland, M. J. Alonso, A. Andremont, P. Maincent, J. Sauzières, and P. Couvreur. Attachment of antibiotics to nanoparticles: preparation, drug-release and antimicrobial activity in vitro. Int. J. Pharm. 35:121–127 (1987).

    Google Scholar 

  18. M. Margosis. Quantitative reversed-phase high-performance liquid chromatographic analysis of ampicillin. J. Chromatogr. 236:469–480 (1982).

    Google Scholar 

  19. Z. Budvari-Barany, G. Szasz, K. Takacs-Novak, I. Hermecz, and A. Lore. The pH influence on the HPLC retention of chemotherapeutic fluoroquinolone derivatives. J. Liquid Chromato. 14:3411–3424 (1991).

    Google Scholar 

  20. Y. A. Chabert and H. Boulingre. Modifications pratiques concernant le dosage des antibiotiques en clinique. Rev. Fr. Etud. Clin. Biol. 2:636–640 (1957).

    Google Scholar 

  21. S. P. Gotoff and M. H. Lepper. Assay of colistin in fecal specimens. Antimicrob. Agents Chemother. 447–454 (1962).

  22. N. E. Dunlap, W. H. Benjamin, Jr, R. D. McCall, Jr, A. B. Tilden, and D. E. Briles. A “safe-site” for Salmonella typhimurium is within splenic cells during the early phase of infection in mice. Microbial Pathogenesis 10:297–310 (1991).

    Google Scholar 

  23. D. G. Guiney, S. Libby, F. C. Fang, M. Krause, and J. Fierer. Growth-phase regulation of plasmid virulence genes in Salmonella. Trends in Microbiol. 3:275–279 (1995).

    Google Scholar 

  24. R. Hengge-Aronis. Survival of hunger and stress: the role of rpoS in early stationary phase gene regulation in Escherichia coli. Cell 72:165–168 (1993).

    Google Scholar 

  25. F. Norel, C. Coynault, I. Miras, D. Hermant, and M. Y. Popoff. Cloning and expression of DNA sequences involved in Salmonella serotype Typhimurium virulence. Mol. Microbiol. 3:733–743 (1989).

    Google Scholar 

  26. A. Dalhoff, S. Matutat, and U. Ullmann. Effect of quinolones against slowly growing bacteria. Chemotherapy 41:92–99 (1995).

    Google Scholar 

  27. G. I. McLeod and M. P. Spector. Starvation-and stationary-phaseinduced resistance to the antimicrobial peptide polymyxin B in Salmonella typhimurium is RpoS independent and occurs through both phoP-dependent and-independent pathways. J. Bacteriol. 178:3683–3688 (1996).

    Google Scholar 

  28. M. R. W. Brown and P. Williams. The influence of environment on envelope properties affecting survival of bacteria in infection. Ann. Rev. Microbiol. 39:527–556 (1985).

    Google Scholar 

  29. J. W. Costerton and T. J. Marrie. Role of the bacterial envelope in the survival of bacteria in infection. In C. S. F. Easmon, J. Jeljaszewicz, M. R. W. Brown, and P. A. Lambert (eds.), Medical Microbiology, Acadamic Press, London, 1983, vol. 3, pp. 63–86.

    Google Scholar 

  30. B. D. Hoyle and J. W. Costerton. Bacterial resistance to antibiotics: the role of biofilms. Prog. Drug Res. 37:91–105 (1991).

    Google Scholar 

  31. J. W. Costerton, R. T. Irwin, and K. J. Cheng. The bacterial glycocalyx in nature and disease. Ann. Rev. Microbiol. 35:299–324 (1981).

    Google Scholar 

  32. J. W. Costerton, K. J. Cheng, G. G. Geesey, T. I. Ladd, J. C. Nickel, and M. Dasgupta. Bacterial biofilms in nature and disease. Ann. Rev. Microbiol. 41:435–464 (1987).

    Google Scholar 

  33. P. A. Suci, M. W. Mittelman, F. P. Yu, and G. G. Geesey. Investigation of ciprofloxacin penetration into Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother. 38:2125–2133 (1994).

    Google Scholar 

  34. N. A. Buchmeier and F. Heffron. Inhibition of macrophage phagosome-lysosome fusion by Salmonella typhimurium. Infect. Immun. 59:2232–2238 (1991).

    Google Scholar 

  35. O. Balland, H. Pinto-Alphandary, A. Viron, E. Puvion, A. Andremont, and P. Couvreur. Intracellular distribution of ampicillin in murine macrophages infected with Salmonella typhimurium and treated with (3H)ampicillin-loaded nanoparticles. J. Antimicrob. Chemother. 37:105–115 (1996).

    Google Scholar 

  36. H. Pinto-Alphandary, O. Balland, M. Laurent, A. Andremont, F. Puisieux, and P. Couvreur. Intracellular visualization of ampicillin-loaded nanoparticles in peritoneal macrophages infected in vitro with Salmonella typhimurium. Pharm. Res. 11:38–45 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Page-Clisson, ME., Pinto-Alphandary, H., Chachaty, E. et al. Drug Targeting by Polyalkylcyanoacrylate Nanoparticles Is Not Efficient Against Persistent Salmonella. Pharm Res 15, 544–549 (1998). https://doi.org/10.1023/A:1011921608964

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011921608964

Navigation