Skip to main content
Log in

Effect of Oxidative Stress on the Structure and Function of Human Serum Albumin

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Human serum albumin (HSA) was mildly oxidized by a metal–catalyzed oxidation system (MCO–HSA), chloramine–T (CT–HSA) or H2O2 (H2O2–HSA), and the effects of these treatments on the structural, drug–binding and esterase–like properties were studied.

Methods. Protein conformation was examined by calorimetric, chromatographic, electrophoretic and spectroscopic techniques. Drug binding was studied by ultrafiltration method, and esterase–like activity was determined using p–nitrophenyl acetate as a substrate.

Results. Far–UV and near–UV CD spectra indicated that significant structural changes had occured as the result of treatment with MCO–HSA and CT–HSA but not with H2O2–HSA. However, SDS–PAGE analysis does not provide precise information on gross conformational changes such as fragmentation, cross–linking and SDS–resistant polymerisation. The results of differential scanning calorimetry, the fluorescence of the hydrophobic probe 1,1–bis–4–anilino–naphthalene–5,5–sulfonic acid and the elution time from a hydrophobic HPLC column indicated that MCO–HSA and CT–HSA in particular, have a more open structure and a higher degree of exposure of hydrophobic areas than unoxidized HSA. In all cases, high–affinity binding of warfarin remained unchanged for all the oxidized HSAs. However, high–affinity binding of ketoprofen to CT–HSA and, especially, MCO–HSA was diminished. In addition, the esterase–like activity of these proteins were all decreased to the same low level.

Conclusions. Mild oxidation of HSA has no detectable effect on the binding of drugs to site I in subdomain IIA. In contrast, both the ligand binding property of site II and the esterase–like activity of oxidized HSAs are decreased, most probably due to conformational changes in subdomain IIIA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. B. Halliwell. Albumin–an important extracellular antioxidant? Biochem. Pharmacol. 37:569–571 (1988).

    Google Scholar 

  2. T. Peters, Jr. All about Albumin: Biochemistry, Genetics, and Medical Applications, Academic Press, San Diego, 1996.

    Google Scholar 

  3. E. Bourdon, N. Loreau, and D. Blache. Glucose and free radicals impair the antioxidant properties of serum albumin. FASEB J. 13:233–244 (1999).

    Google Scholar 

  4. J. Iglesias, V. E. Abernethy, Z. Wang, W. Lieberthal, and J. S. K. Levine. Albumin is a major serum survival factor for renal tubular cells and macrophages through scavenging of ROS. Am. J. Physiol. 277:F711–722 (1999).

    Google Scholar 

  5. R. T. Dean, J. V. Hunt, A. J. Grant, Y. Yamamoto, and E. Niki. Free radical damage to proteins: The influence of the relative localization of radical generation, antioxidants, and target proteins. Free Rad. Biol. Med. 11:161–168 (1991).

    Google Scholar 

  6. C. T. Bishop, Z. Mirza, J. D. Crapo, and B. A. Freeman. Free radical damage to culture porcine aortic endothelial cells and lung fibroblasts: Modulation by culture conditions. In Vitro Cell. Dev. Biol. 21:229–236 (1985).

    Google Scholar 

  7. J. Z. Krezanoski and R. D. Houlsby. A comparison of new hydrogen peroxide disinfection systems. J. Am. Optom. Assoc. 59:193–197 (1988).

    Google Scholar 

  8. D. C. Carter and J. X. Ho. Structure of serum albumin. Adv. Protein Chem. 45:153–203 (1994).

    Google Scholar 

  9. S. Curry, H. Mandelkow, P. Brick, and N. Franks. Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nat. Struct. Biol. 5:827–835 (1998).

    Google Scholar 

  10. M. K. Cha and I. H. Kim. Glutathione–linked thiol peroxidase activity of human serum albumin. Biochem. Biophys. Res. Commun. 222:619–625 (1996).

    Google Scholar 

  11. S. Era, K. Kuwata, H. Imai, K. Nakamura, T. Hayashi, and M. Sogami. Age–related change in redox state of human serum albumin. Biochim. Biophys. Acta 1247:12–16 (1995).

    Google Scholar 

  12. M. Soriani, D. Pietraforte, and M. Minetti. Antioxidant potential of anaerobic human plasma: role of serum albumin and thiols as scavengers of carbon radicals. Arch. Biochem. Biophys. 312:180–188 (1994).

    Google Scholar 

  13. E. Meucci, A. Mordente, and G. E. Martorana. Metal–catalyzed oxidation of human serum albumin: conformational and functional changes. J. Biol. Chem. 266:4692–4699 (1991).

    Google Scholar 

  14. B. Garner, P. K. Witting, A. R. Waldeck, J. K. Christison, M. Raftery, and R. Stocker. Oxidation of high density lipoproteins. I. Formation of methionine sulfoxide in apolipoproteins AI and AII is an early event that accompanies lipid peroxidation and can be enhanced by alpha–tocopherol. J. Biol. Chem. 273:6080–6087 (1998).

    Google Scholar 

  15. J. W. Finch, R. K. Crouch, D. R. Knapp, and K. L. Schey. Mass spectrometric identification of modifications to human serum albumin treated with hydrogen peroxide. Arch. Biochem. Biophys. 305:595–599 (1993).

    Google Scholar 

  16. G. Sudlow, D. J. Birkett, and D. N. Wade. The characterization of two specific drug binding sites on human serum albumin. Mol. Pharmacol. 11:824–832 (1975).

    Google Scholar 

  17. H. Watanabe, S. Tanase, K. Nakajou, T. Maruyama, U. Kragh–Hansen, and M. Otagiri. Role of Arg–410 and Tyr–411 in human serum albumin for ligand binding and esterase–like activity. Biochem. J. 349:813–819 (2000).

    Google Scholar 

  18. R. F. Chen. Removal of fatty acids from serum albumin by charcoal treatment. J. Biol. Chem. 242:173–181 (1967).

    Google Scholar 

  19. I. Climent, L. Tsai, and R. L. Levine. Derivatization of γ–glutamyl semialdehyde residues in oxidized proteins by fluorescein–amine. Anal. Biochem. 182:226–232 (1989).

    Google Scholar 

  20. P. G. Pande, R. V. Nellore, and H. R. Bhagat. Optimization and validation of analytical conditions for bovine serum albumin using capillary electrophoresis. Anal. Biochem. 204:103–106 (1992).

    Google Scholar 

  21. T. Zor and Z. Selinger. Linearization of the Bradford protein assay increases its sensitivity: theoretical and experimental studies. Anal. Biochem. 236:302–308 (1996).

    Google Scholar 

  22. H. Schagger and G. Von Jagow. Tricine–sodium dodecyl sulfate–polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166:368–379 (1987).

    Google Scholar 

  23. K. Takabayashi, T. Imada, Y. Saito, and Y. Inada. Coupling between fatty acid binding and sulfhydryl oxidation in bovine serum albumin. Eur. J. Biochem. 136:291–295 (1983).

    Google Scholar 

  24. P. M. Horowitz, S. Hua, and D. L. Gibbons. Hydrophobic surfaces that are hidden in chaperonin Cpn60 can be exposed by formation of assembly–competent monomers or by ionic perturbation of the oligomer. J. Biol. Chem. 270:1535–1542 (1995).

    Google Scholar 

  25. P. J. Coussons, J. Jacoby, A. McKay, S. M. Kelly, N. C. Price, and J. V. Hunt. Glucose modification of human serum albumin: A structural study. Free Radic. Biol. Med. 22:1217–1227 (1997).

    Google Scholar 

  26. V. T. G. Chuang, A. Kuniyasu, H. Nakayama, Y. Matsushita, S. Hirono, and M. Otagiri. Helix 6 of subdomain IIIA of human serum albumin is the region primarily photolabeled by ketoprofen, an arylpropionic acid NSAID containing a benzophenone moiety. Biochim. Biophys. Acta 1434:18–30 (1999).

    Google Scholar 

  27. M. H. Rahman, K. Yamasaki, Y. H. Shin, C. C. Lin, and M. Otagiri. Characterization of high affinity binding sites of non–steroidal anti–inflammatory drugs with respect to site–specific probes on human serum albumin. Biol. Pharm. Bull. 16:1169–1174 (1993).

    Google Scholar 

  28. A. Amici, R. L. Levine, L. Tsai, and E. R. Stadtman. Conversion of amino acid residues in proteins and amino acid homopolymers to carbonyl derivatives by metal–catalyzed oxidation reactions. J. Biol. Chem. 264:3341–3346 (1989).

    Google Scholar 

  29. K. J. Fehske, W. E. Muller, U. Wollert, and L. M. Velden. The lone tryptophan residue of human serum albumin as part of the specific warfarin binding site. Binding of dicoumarol to the warfarin, indole and benzodiazepine binding sites. Mol. Pharmacol. 16:778–789 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anraku, M., Yamasaki, K., Maruyama, T. et al. Effect of Oxidative Stress on the Structure and Function of Human Serum Albumin. Pharm Res 18, 632–639 (2001). https://doi.org/10.1023/A:1011029226072

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011029226072

Navigation