Skip to main content
Log in

Tolerance assessment of Cistus ladanifer to serpentine soils by developmental stability analysis

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Developmental instability is the result of random environmental perturbations during development. Its absence (developmental stability) depends on an organism's ability to buffer environmental disturbances. Both genotype and environment influence the phenotypic expression of developmental instability and it is susceptible to selection pressure. We studied developmental instability (as indicated by increased within-individual asymmetry of repeated traits) in vegetative and reproductive structures of three populations of Cistus ladanifer L. living in different soil substrates (serpentine, siliceous and contact zone) to detect tolerance to serpentine soils. Serpentine soils, characterized by high concentrations of heavy metals (Ni, Cr, and Co), low levels of Ca/Mg ratio and high water deficit, can adversely affect plant performance. In this study we demonstrated that asymmetry and within-plant variance were higher in the contact zone population than either the silica or serpentine populations, proving the adaptation of C. ladanifer to serpentine soils. Within-population estimates of developmental instability were concordant for both vegetative and reproductive traits. There was little or no within-individual correlation among estimates of developmental instability based on different structures, i.e., plants that had highly asymmetric leaves always had high developmental instability in translational symmetry. Radial asymmetry of petals was negatively correlated with petal size, especially in silica soil plants, providing evidence of selection for symmetric and large petals. While leaf size was positively correlated with absolute fluctuating asymmetry, suggesting selection for small or intermediate size leaves. Serpentine soils presented the largest foliar and floral traits, as well as shoot elongation, while silica soil plants had the smallest scores. On the contrary, aboveground plant biomass was larger in silica soil plants, while the contact zone plants had the lowest biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alados, C. L., Escós, J. & Emlen, J. M. 1994. Scale asymmetry: a tool to detect developmental instability under the fractal geometry scope. Pp. 25-36 In: Novak, M. M. (ed.), Fractals in the Natural and Applied Sciences. Elsevier Science B.V., North-Holland.

  • Alados, C. L., Navarro, T., Cabezudo, B., Emlen, J. M. & Freeman C. D. 1998. Developmental instability in gynodioecicus Teucrium lusitanicum. Evol. Ecol. 12: 21-34.

    Google Scholar 

  • Arianoutsou, M., Rundel, P.W. & Berry, W. L. 1993. Serpentine endemics as biological indicators of soil elemental concentrations. Pp. 179-189 In: Markert. B. (ed.), Plants as Biomonitors. VCH Weinheim, New York.

  • Bagchi S., & Iyama, S. 1983. Radiation induced developmental instability in Arabidopsis thaliana. Theor. Appl. Genetic 65: 85-92.

    Google Scholar 

  • Bagchi S., Sharma, V. P. & Grupta, P. K. 1989. Developmental instability in leaves of Tectona grandis. Silvae Genetica 38: 1-6.

    Google Scholar 

  • Barrett, S. C. H., & Harder, L. D. 1992. Floral variation in Eichhornia paniculata (Spreng.) Solms (Pontederiaceae) II. Effects of development and environment on the formation of selfing flowers. J. Evol. Biol. 5: 83-107.

    Google Scholar 

  • Bell, G. 1985. On the function of flowers. Proc. Roy. Soc. London B224: 223-265.

    Google Scholar 

  • Bradshaw A. D. 1965. Evolutionary significance of phenotypic plasticity in plants. Adv. Genet. 31: 115-155.

    Google Scholar 

  • Borchert, R. 1976. Differences in shoot growth patterns between juvenile and adult trees and their interpretation based on systems analysis of trees. Acta Horticulturae 56: 123-130.

    Google Scholar 

  • Brooks, R. R. 1987. Serpentine and its vegetation. Dioscorides, Portland, Oregon.

  • Cabezudo, B., Navarro, T., Pérez Latorre, A.V., Nieto-Caldera J. M. & Orshan, G. 1992. Estudios fenomorfológicos en la vegetación del sur de España. I. Cistus L. Acta Bot. Malacitana 16: 229-239.

    Google Scholar 

  • Champagnat, P. 1950. Corrélations d 'inhibition chez les plantes. Année Biologique 26(12): 1-18.

    Google Scholar 

  • Clarke, G. M. 1993. The genetic basis of developmental stability. I. Relationships between stability, heterozygosity and genomic coadaptation. Genetica 89: 15-23.

    Google Scholar 

  • Clarke, G. M. 1995. Relationships between developmental stability and fitness: application for conservation biology. Cons. Biol. 9: 18-24.

    Google Scholar 

  • Comte, L. 1993. Rythmes de croissance et structures spatiales périodiques d' arbres tropicaux. Example de cinq espèces de fôret Equatriale. Thése de Doctorat, Univ. Montpellier II. Montpellier 449 p.

  • Cronk, Q. & Möller M. 1997. Genetics of floral symmetry revealed. Trends Ecol. Evol. 12: 85-86.

    Google Scholar 

  • Ellstrand, N. C. & Mitchell, R. J. 1988. Spatial and temporal patterns of floral inconstancy in plants and populations of Ipomopsis aggregata (Polemoniaceae). Bot. Gazette 149: 209-212.

    Google Scholar 

  • Escós, J., Alados, C. L. & Emlen, J.M. 1995. Fractal structures and fractal functions as disease indicators. Oikos 74: 310-314.

    Google Scholar 

  • Escós, J., Alados, C. L. & Emlen, J. M. 1997. Grazing impact on plant fractal architecture and fitness of a Mediterranean shrub (Anthyllis cytisoides L.). Funct. Ecol. 11: 66-78.

    Google Scholar 

  • Evans, A. S. & Marshall, M. 1996. Developmental instability in Brassica campestris (Cruciferae) - Fluctuating asymmetry of foliar and floral traits. J. Evol. Biol. 9: 717-736.

    Google Scholar 

  • Faegri, K & Pijl, Van der. 1971. The principles of pollination ecology. Pergamon Press, Headington Hill Hall, Oxford 291, p.736.

    Google Scholar 

  • Fowler, K., & Whitlock, M. C. 1994. Fluctuating asymmetry does not increase with moderate inbreeding in Drosophila melanogaster. Heredity 73: 373-376.

    PubMed  Google Scholar 

  • Freeman, D. C., Graham, J. H. & Emlen, J. M. 1993. Developmental stability in plants: symmetries, stress and epigenesis. Genetica 89: 97-119.

    Google Scholar 

  • Freeman, D. C., Graham, J. H., Byrd, D. W., McArthur, E. D., & Turner, W. A. 1995. Narrow hybrid zone between two subspecies of big sagebrush, Artemisia tridentata (Asteraceae). III. Developmental instability. Am. J. Bot. 82: 1144-1152.

    Google Scholar 

  • Freitas, H. & Mooney, H. 1996. Effects of water stress and soil texture on the performance of two Bromus hordeaceus ecotypes from sandstone and serpentine soils. Acta Oecologica 17: 307-317.

    Google Scholar 

  • Graham, J. H. 1992. Genomic coadaptation and developmental stability in hybrid zones. Acta Zool. Fennica 192: 121-132.

    Google Scholar 

  • Graham, J. H., Freeman, D. C. & Emlen J.M. 1993. Developmental stability: A sensitive indicator of population under stress. Pp. 136-158. In: Landis, W.G., Hughes J. S. & Lewis, M. A. (eds.) Environmental Toxicology and Risk Assessment. ASTM STP 1179, American Society for Testing and Materials, Philadelphia.

  • Grant, V. 1956. The genetic structure of races and species in Gilia. Adv. Genetic 8: 55-87.

    Google Scholar 

  • Grant, V. 1975. Genetics of flowering plants. Columbia University Press, New York.

    Google Scholar 

  • Hallé, F., Oldeman, R. A. & P. B. Tomlinson. 1978. Tropical trees and forests: an architectural analysis. Springer-Verlag, Berlin.

  • Harvey, I. F. & Walsh, K. J. 1993. Fluctuating asymmetry and lifetime success are correlated in males of damselfly Coenagrion puella. Ecol. Entomol. 18: 198-202.

    Google Scholar 

  • Huether, C. A., Jr. 1969. Constancy of the pentamerous corolla phenotype in natural populations of Linanthus. Evolution 23: 572-588.

    Google Scholar 

  • Jones, M., & Harper, J. L. 1987. The influence of neighbours on the growth of trees. II. The fate of buds on long and short shoots in Betula pendula. Proc. Roy. Soc. London B232: 19-33.

    Google Scholar 

  • Kozlov, M. V., Wilsey, B. J., Koricheva, J. & Haukioja, E. 1996. Fluctuating asymmetry of birch leaves increases under pollution impact. J. Appl. Ecol. 33: 1489-1495.

    Google Scholar 

  • Leary, R. F., Allendorf, F.W. & Knudsen, K. L. 1985. Inheritance of meristic variation and the evolution of developmental stability in rainbow trout. Evolution 39: 308-314.

    Google Scholar 

  • Leary, R. F., Allendorf, F. W. & Knudsen, K. L. 1992. Genetic, environmental, and developmental causes of meristic variation in rainbow trout. Acta Zool. Fennica, 191: 79-95.

    Google Scholar 

  • Leung, B. & Forbes, M. R. 1997. Modelling fluctuating asymmetry in relation to stress and fitness. Oikos 78: 397-405.

    Google Scholar 

  • Levin, D. A. 1970. Developmental stability and evolution in peripheral isolates. Am. Nat. 104: 343-353.

    Google Scholar 

  • Ludwig, W. 1932. Das Rechts-Links Problem im Tierreich und beim Menschen. Springer-Verslag, Berlin, Germany.

    Google Scholar 

  • Markow, T. A. 1994. Contemporary issues in genetics and evolution. Developmental Instability: Its origins and evolutionary implications. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Markow, T. A. & Clarke, G. M. 1997. Meta-analysis of the heritability of developmental stability: a giant step backward. J. Evol. Biol. 10: 31-37.

    Google Scholar 

  • Marschner, H. 1986. Mineral nutrition of higher plants. Academic Press, London.

    Google Scholar 

  • Mather, K. 1953. Genetic control of stability in development. Herdity 7: 297-336.

    Google Scholar 

  • Maynard Smith, J., Burian, R., Kaufmann, S., Alberch, P., Campbell, J., Goodwin, B., Lande, R., Raup, D. & Wolpert, L. 1985. Developmental constraints and evolution. Quat. Rev. Biol 60: 265-287.

    Google Scholar 

  • McKenzie, J. A. 1994. Selection at the diazinon resistance locus in overwintering populations of Lucilia cuprina (the Australian sheep blowfly). Heredity 73: 57-64.

    PubMed  Google Scholar 

  • McKenzie, J. A. & O'Farrell K., 1993. Modification of developmental instability and fitness: malathio-resistance in the Australian sheep blowfly, Lucilia cuprina. Genetica 89: 67-76.

    Google Scholar 

  • McKenzie, J. A., Whitten, M. J. & Adena, M. A. 1982. The effect of genetic background on the fitness of diazinon resistance genotypes of the Australian sheep blowfly, Lucilia cuprina. Heredity 49: 1-9.

    Google Scholar 

  • Meinhardt, H. 1984. Models of pattern formation and their application to plant development. Pp: 1-32. In: Barlow, P. W. & Carr, D. J. (eds) Positional controls in plant development. Cambridge University Press, Cambridge.

    Google Scholar 

  • Merilä, J., & Björklund, M. 1995. Fluctuating asymmetry and measurement error. Syst. Biol. 44: 97-101.

    Google Scholar 

  • Møller A. P., & Eriksson, M. 1994. Patterns of fluctuating asymmetry in flowers: Implications for sexual selection in plants. J. Evol. Biol. 7: 97-113.

    Google Scholar 

  • Møller A. P. 1995a. Bumblebee preference for symmetrical flowers. Proc. Nat. Acad. Sci. USA 92: 2288-2292.

    PubMed  Google Scholar 

  • Møller A. P. 1995b. Leaf-mining insects and fluctuating asymmetry in elm Ulmus glabra leaves. J. Animal Ecol. 64: 697-707.

    Google Scholar 

  • Møller A. P. & Thornhill, R. 1997. A meta-analysis of the heritability of developmental stability. J. Evol. Biol. 10: 1-16.

    Google Scholar 

  • Muñoz Garmendia, F. & Navarro, C. 1993. Cistaceae. Pp. 319-436. In: Castroviejo, S, Aedo, C. Cirujano, S., Laínz, M., Montserrat, P., Morales, R., Muñoz Garmendia, F., Navarro, C., Paiva, J. & Soriano, C. (eds.). Flora Ibérica Vol. III. Real Jardín Botánico. C.S.I.C. Madrid.

  • Ng, F. S. P. 1979. Growth rhythms in tropical juvenile trees. Bull. Soc. Botanique Fr. 126, Actulités botaniques 3: 139-149.

    Google Scholar 

  • Palmer, A. R. & Strobeck, C. 1986. Fluctuating asymmetry: measurement, analysis, patterns. Annals Review Systematic 17: 391-421.

    Google Scholar 

  • Palmer, A. R. & Strobeck, C. 1992. Fluctuating asymmetry as a measure of developmental stability: Implications of non-normal distributions and power of statistical tests. Acta Zool. Fennica 191: 57-72.

    Google Scholar 

  • Parsons, P. A. 1992. Fluctuating asymmetry: a biological monitor of environmental and genomic stress. Heredity 68: 361-364.

    PubMed  Google Scholar 

  • Paxman, G. J. 1956. Differentiation and stability in the development of Nicotiana rustica. Ann. Bot. 20: 331-347.

    Google Scholar 

  • Pickett, S. T. A. & Kempf, J. S. 1980. Branching patterns in forest shrubs and understory trees in relation to habitat. New Phytol. 86: 219-228.

    Google Scholar 

  • Polak, M. 1993. Parasites increase fluctuating asymmetry of male Drosophila nigrospiracula: implications for sexual selection. Genetica 89: 255-265.

    Google Scholar 

  • Proctor, J. 1971. The plant ecology of serpentine. II. Plant response to serpentine soils. J. Ecol. 59: 397-410.

    Google Scholar 

  • Proctor, J., & Woodell, S. R. J. 1975. The ecology of serpentine soils. Adv. Ecol. Res. 9: 256-347.

    Google Scholar 

  • Remphrey, W., & Powell, G. R. 1985. Crown architecture of Larix laricia saplings: shoot preformation and neoformation and their relationships to shoot vigour. Can. J. Bot. 62: 2181-2192.

    Google Scholar 

  • Rice, W. R. 1989. Analyzing tables of statistical tests. Evolution 43: 223-225.

    Google Scholar 

  • Roberts, B. A. & Proctor, J. 1992. The ecology of areas with serpentinized rocks a world view. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Sakai, K., & Shimamoto, Y. 1965. Developmental instability in leaves and flowers of Nicotiana tabacum. Genetics 51: 801-813.

    Google Scholar 

  • Schroeder, M. 1991. Fractals, chaos, power laws. Minutes from an infinite paradise. W.H. Freeman and Company, New York.

  • Sherry, R. A. & Lord, E. M. 1996a. Developmental stability in leaves of Clarkia tembloriensis (Onagraceae) as related to population outcrossing rates and heterozygosity. Evolution, 50: 80-91.

    Google Scholar 

  • Sherry, R. A. & Lord, E. M. 1996b. Developmental stability in flowers of Clarkia tembloriensis (Onagraceae). J. Evol. Biol., 9: 911-930.

    Google Scholar 

  • Sokal, R. R. & Rohlf, F. J. 1981. Biometry, 2d ed., Freeman, San Francisco, CA.

  • Soulé, M. E. 1982. Allomeric variation. 1. The theory and some consequences. Am. Nat. 120: 751-764.

    Google Scholar 

  • Stebbins, G. L., Jr. 1951. Natural selection annd the differentiation of angiosperm families. Evolution 5: 299-324.

    Google Scholar 

  • Stebbins, G. Y. J. 1963. Variation and evolution in Plants. Columbia Biological Series, 16, Columbia University Press, New York, 643 p.

    Google Scholar 

  • Summer, F. B. & Huestis, R. R. 1921. Bilateral asymmetry and its relation to certain problems of genetics. Genetics 6: 445-485.

    Google Scholar 

  • Swaddle, J. P. 1997. On the heritability of developmental stability. J. Evol. Biol. 10: 57-61.

    Google Scholar 

  • Talavera, S., Gibbs, P. E. & Herrera, J. 1993. Reproductive biology of Cistus ladanifer (Cistaceae). Plant Syst. Evol. 186: 123-134.

    Google Scholar 

  • Thiébaut, B., Cuguen, J. & Dupré, S. 1985. Architecture de jeunes hêtres, Fagus sylvatica. Can. J. Bot. 63: 2100-2110.

    Google Scholar 

  • Thoday, J. M. 1955. Balance, heterozygosity and developmental stability. Cold Spring Harbor Symposium on Quantitative Biology 22: 318-326.

    Google Scholar 

  • Thoday, J. M. 1958. Homeostasis in a selection experiment. Heredity 12, 401-415.

    Google Scholar 

  • Valentine, D.W., & Soulé, M. E. 1973. Effect of p,p′-DDT on developmental stability of pectoral fin rays in the grunion, Leuresthes tenius. Fisheries Bull. 71: 920-921.

    Google Scholar 

  • Van Valen, L. 1962. A study of fluctuating asymmetry. Evolution 16: 125-142.

    Google Scholar 

  • Waddington, C. H. 1942. Canalization of development and the inheritance of acquired characters. Nature 150: 563-565.

    Google Scholar 

  • Waddington, C. H. 1957. The strategy of genes. Allen and Uniwin, London.

  • Watson P. J. & Thornhill, R. 1994. Fluctuating asymmetry and sexual selection. Trends Ecol. Evol. 9: 21-25.

    Google Scholar 

  • Willson, M. F. 1990. Sexual selection in plants and animals. Trends Evol. Ecol. 5: 210-214.

    Google Scholar 

  • Zakharov, V. 1987. Animal asymmetry: populations phenogenetic approach. Nauka, Moscow.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alados, C.L., Navarro, T. & Cabezudo, B. Tolerance assessment of Cistus ladanifer to serpentine soils by developmental stability analysis. Plant Ecology 143, 51–66 (1999). https://doi.org/10.1023/A:1009841216449

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009841216449

Navigation