Skip to main content
Log in

Review: Biosafety of E. coli β-glucuronidase (GUS) in plants

  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The β-glucuronidase (GUS) gene is to date the most frequently used reporter gene in plants. Marketing of crops containing this gene requires prior evaluation of their biosafety. To aid such evaluations of the GUS gene, irrespective of the plant into which the gene has been introduced, the ecological and toxicological aspects of the gene and gene product have been examined. GUS activity is found in many bacterial species, is common in all tissues of vertebrates and is also present in organisms of various invertebrate taxa. The transgenic GUS originates from the enterobacterial species Escherichia coli that is widespread in the vertebrate intestine, and in soil and water ecosystems. Any GUS activity added to the ecosystem through genetically modified plants will be of no or minor influence. Selective advantages to genetically modified plants that posses and express the E. coli GUS transgene are unlikely. No increase of weediness of E. coli GUS expressing crop plants, or wild relatives that might have received the transgene through outcrossing, is expected. Since E. coli GUS naturally occurs ubiquitously in the digestive tract of consumers, its presence in food and feed from genetically modified plants is unlikely to cause any harm. E. coli GUS in genetically modified plants and their products can be regarded as safe for the environment and consumers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Alonso, E.M., Whitington, P.F., Whitington, S.H., Rivard, W.A. and Given, G. (1991) Enterohepatic circulation of nonconjugated bilirubin in rats fed with human milk. J. Pediatrics 118, 425-30.

    Google Scholar 

  • Alwen, A., Benito Moreno, R.M., Vicente, O. and Heberle-Bors, E. (1992) Plant endogenous β-glucuronidase activity: how to avoid interference with the use of E. coli β-glucuronidase as a reporter gene in transgenic plants. Transgenic Res. 1, 63-70.

    Google Scholar 

  • APHIS (1997) USDA Animal and Plant Health Inspection Service, http://www.aphis.usda.gov/biotech/

  • Baker, H.G. (1974) The evolution of weeds. Ann. Rev. Ecol. Syst. 5, 1-24.

    Google Scholar 

  • Berkowitz, D.B. (1990) The food safety of transgenic animals. Bio/Technol. 8, 819-25.

    Google Scholar 

  • Borel, C., Gupta, M.P. and Hostettmann, K. (1987) Molluscicidal saponins from Swartzia simplex. Phytochem. 10, 2685-9.

    Google Scholar 

  • Carrette, O., Favier, C., Mizon, C., Neut, C., Cortot, A., Colombel, J.F. and Mizon, J. (1995) Bacterial enzymes used for colon-specific drug delivery are decreased in active Crohn's disease. Digestive Diseases & Sci. 40, 2641-6.

    Google Scholar 

  • Cui, N., Friend, D.R. and Fedorak, R.N. (1994) A budesonide prodrug accelerates treatment of colitis in rats. Gut 35, 1439-46.

    Google Scholar 

  • Dutton, G.J. (1980) Glucuronidation of Drugs and Other Compounds. Boca Raton, FL, USA: CRC Press Inc.

    Google Scholar 

  • Farrell, L.B. and Beachy, R.N. (1990) Manipulation of β-glucuronidase for use as a reporter in vacoular targeting studies. Plant Mol. Biol. 15, 821-5.

    Google Scholar 

  • Flamm, E. (1993) Chymosin derived from Escherichia coli K12 and Bacillus stearothermophilus α-amylase derived from Bacillus subtilis. In OECD, Safety Evaluations of Foods Derived by Modern Biotechnology: Concepts and Principles, Paris, France: OECD. pp. 21-30.

    Google Scholar 

  • Flavell, A.J., Pearce, S.R. and Kumar, A. (1994) Plant transposable elements and the genome. Curr. Opin. Genet. Dev. 4, 838-44.

    Google Scholar 

  • Francke, U. (1976) The human gene for β-glucuronidase is on chromosome 7. Am. J. Hum. Genet. 28, 357.

    Google Scholar 

  • Fuchs, R.L. and Astwood, J.D. (1996) Allergenicity assessment of foods derived from genetically modified plants. Food Technol. 50, 83-8.

    Google Scholar 

  • Gallagher, S.R. (1992) GUS Protocols: using the GUS Gene as a Reporter of Gene Expression. San Diego, CA, USA: Academic Press Inc.

    Google Scholar 

  • Gallie, D.R., Walbot, V. and Feder, J.N. (1992) GUS as a useful reporter gene in animal cells. In Gallagher, S.R., ed., GUS Protocols: Using the GUS Gene as a Reporter of Gene Expression, San Diego, CA, USA: Academic Press Inc. pp. 181-188.

    Google Scholar 

  • Gehrmann, M.C., Opper, M., Sedlacek, H.H., Bosslet, K. and Czech, J. (1994) Biochemical properties of recombinant human β-glucuronidase synthesized in baby hamster kidney cells. Biochem. J. 301, 821-8.

    Google Scholar 

  • Haeberlin, B., Rubas, W., Nolen, H.W. and Friend, D.R. (1993) In vitro evaluation of dexamethasone-β-D-glucuronide for colon-specific drug delivery. Pharmaceut. Res. 10, 1553-62.

    Google Scholar 

  • Hänsch, R., Koprek, T., Mendel, R.R. and Schulze, J. (1995) An improved protocol for eliminating endogenous β-glucuronidase in barley. Plant Sci. 105, 63-9.

    Google Scholar 

  • Hawkesworth, G., Draser, B.S. and Hill, M.J. (1971) Intestinal bacteria and the hydrolysis of glycosidic bonds. J. Med. Microbiol. 4, 451-9.

    Google Scholar 

  • Hodal, L., Bochardt, A., Nielsen, J.E., Mattsson, O. and Okkels, F.T. (1992) Detection, expression and specific elimination of endogenous β-glucuronidase activity in transgenic and nontransgenic plants. Plant Sci. 87, 115-22.

    Google Scholar 

  • Hu, C.-Y., Chee, P.P., Chesney, R.H., Zhou, H.J., Miller, P.D. and O'Brien, W.T. (1990) Intrinsic GUS-like activities in seed plants. Plant Cell Rep. 9, 1-5.

    Google Scholar 

  • Ince, Z., Coban, A., Peker, I. and Can, G. (1995) Breast milk β-glucuronidase and prolonged jaundice in the neonate. Acta Paediatr. 84, 237-9.

    Google Scholar 

  • Iturriaga, G., Jefferson, R.A. and Bevan, M.W. (1989) Endoplasmatic reticulum targeting and glycosylation of hybrid proteins in transgenic tobacco. Plant Cell 1, 381-90.

    Google Scholar 

  • Jefferson, R.A. (1985) DNA transformation of Caenorhabditis elegans: development and application of a new gene fusion system. Ph.D. Dissertation, University of Colorado, Boulder, CO, USA.

    Google Scholar 

  • Jefferson, R.A. (1987) GUS-fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901-7.

    Google Scholar 

  • Jefferson, R.A. (1989) The GUS reporter gene system. Nature 342, 837-8.

    Google Scholar 

  • Jefferson, R.A. (1993) Plant promoter β-glucuronidase gene construct. United States Patent No. 5,268,463.

  • Jefferson, R.A. and Wilson, K.J. (1991) The GUS gene fusion system. Plant Mol. Biol. Manual B14, 1-33.

    Google Scholar 

  • Jefferson, R.A., Burgess, S.M. and Hirsh, D. (1986) β-Glucuronidase from Escherichia coli as a gene fusion marker. Proc. Natl Acad. Sci. USA 83, 8447-51.

    Google Scholar 

  • Jones, D.D. and Maryanski, J.H. (1991) Safety considerations in the evaluation of transgenic plants for human food. In Levin, M.A. and Strauss, H.S. eds., Risk Assessment in Genetic Engineering, pp. 64-82. New York: McGraw-Hill.

    Google Scholar 

  • Kavanagh, T.A., Jefferson, R.A. and Bevan, M.W. (1988) Targeting a foreign protein to chloroplasts using fusions to the transit peptide of a chlorophyll a/b protein. Mol. Gen. Genet. 215, 38-45.

    Google Scholar 

  • Keeler, K.H. (1985) Implications of weed genetics and ecology for the deliberate release of genetically engineered crop plants. Recomb. DNA Tech. Bull. 8, 165-72.

    Google Scholar 

  • Keeler, K.H. (1989) Can genetically engineered crops become weeds? Bio/Technol. 7, 1134-39.

    Google Scholar 

  • Kinouchi, T., Kataoka, K., Miyanishi, K., Akimoto, S. and Ohnishi, Y. (1993) Biological activities of the intestinal microflora in mice, treated with antibiotics or untreated, and the effects of the microflora on absorption and metabolic activation of orally administered gluthathione conjugates of K-region epoxides of 1-nitropyrene. Carcinogenesis 14, 869-74.

    Google Scholar 

  • Koburger, J.A. and Miller, M.L. (1985) Evaluation of a fluorogenic MPN procedure for determining Escherichia coli in oysters. J. Food Protection 48, 244-5.

    Google Scholar 

  • Kosugi, S., Ohashi, Y., Nakajima, K. and Arai, Y. (1990) An improved assay for β-glucuronidase in transformed cells: methanol almost completely suppresses a putative endogenous β-glucuronidase activity. Plant Sci. 70, 133-40.

    Google Scholar 

  • Kulkarni, N. and Reddy, B.S. (1994) Inhibitory effect of Bifidobacterium longum cultures on the azoxymethane-induced aberrant cript foci formation and fecal bacterial β-glucuronidase. Proc. Soc. Exp. Biol. & Med. 207, 278-83.

    Google Scholar 

  • Kyle, J.W., Galvin, N., Vogler, C. and Grubb, J.H. (1992) β-Glucuronidase (GUS) assay in animal tissue. In Gallagher, S.R., ed., GUS Protocols: Using the GUS Gene as a Reporter of Gene Expression, San Diego, CA, USA: Academic Press Inc. pp. 189-203.

    Google Scholar 

  • Langley, S.D., Wilson, S.D., Gros, A.S., Warner, C.K. and Finnerty, V. (1983) A genetic variant of β-glucuronidase in Drosophila melanogaster. J. Biol. Chem. 258, 7416-24.

    Google Scholar 

  • Levvy, G.A. (1954) Baicalinase, a plant β-glucuronidase. Biochem. J. 58, 462-9.

    Google Scholar 

  • Levvy, G.A. and Conchie, J. (1966) β-Glucuronidase and the hydrolysis of glucuronides. In Dutton, G.J., ed., Glucuronic Acid, New York: Academic Press. p. 301.

    Google Scholar 

  • Levvy, G.A. and Marsh, C.A. (1959) Preparation and properties of β-glucuronidase. Adv. Carbohydrate Chem. 14, 381-428.

    Google Scholar 

  • Ling, W.H., Saxelin, M., Hanninen, O. and Salminen, S. (1994) Enzyme profile of Lactobacillus strain GG by rapid API ZYM system. A comparison of intestinal bacterial strains. Microbial Ecol. Health & Disease 7, 99-104.

    Google Scholar 

  • Luckner, M. (1977) Secondary Metabolism in Plants and Animals. London, UK: Chapman and Hall.

    Google Scholar 

  • Merfort, I. and Wendisch, D. (1988) Flavonoid glucuronides from Arnica montana flowers. Planta Med. 54, 247-50.

    Google Scholar 

  • Metz, P.L.J. and Nap, J.P. (1997) A transgene-centered approach to the biosafety of transgenic plants: overview of selection and reporter genes. Acta Bot. Neerl. 46, 25-50.

    Google Scholar 

  • Molly, K., Desmet, I., Nollet, L., Vandewoestyne, M. and Verstraete, W. (1996) Effect of lactobacilli on the ecology of the gastro-intestinal microbiota cultured in the SHIME reactor. Microbial Ecol. Health & Disease 9, 79-89.

    Google Scholar 

  • Nap, J.-P., Metz, P.L.J. and Stiekema, W.J. (1995) Biosafety analyses of transgenic plants: A transgene centered approach. In CCRO, Unanswered Safety Questions when Employing GMO's, pp 71-76. Noordwijkerhout: Workshop Proceedings.

  • Narita, M., Nagai, E., Hagiwara, H., Aburada, M., Yokoi, T. and Kamataki, T. (1993) Inhibition of β-glucuronidase by natural glucuronides of Kampo medicines using glucuronide of SN-38 (7-ethyl-10-hydroxycamptothecin) as a substrate. Xenobiotica 23, 5-10.

    Google Scholar 

  • Organisation for Economic Co-operation and Development (OECD) (1993a) Safety Considerations for Biotechnology: Scale-up of Crop Plants. Paris, France: OECD.

    Google Scholar 

  • Organisation for Economic Co-operation and Development (OECD) (1993b) Safety Evaluation of Foods Derived by Modern Biotechnology: Concepts and Principles. Paris, France: OECD.

    Google Scholar 

  • Oshima, A., Kyle, J.W., Miller, R.D., Hoffmann, J.W., Powell, P.P., Grubb, J.H., Sly, W.S., Tropak, M., Guise, K.S. and Gravel, R.A. (1987) Cloning, sequencing, and expression of cDNA for human β-glucuronidase. Proc. Natl Acad. Sci. USA 84, 685-9.

    Google Scholar 

  • Plegt, L. and Bino, R.J. (1989) β-Glucuronidase activity during development of the male gametophyte from transgenic and non-transgenic plants. Mol. Gen. Genet. 216, 321-7.

    Google Scholar 

  • Réactifs IBF, Helix pomatia juice β-glucuronidase + sulfatases in the assays of urinary steroids. Instruction Manual.

  • Regal, P.J. (1993) The true meaning of 'exotic species' as a model for genetically engineered organisms. Experientia 49, 225-34.

    Google Scholar 

  • Ritz, K., Dighton, J. and Giller, K.E. (1994) Beyond the Biomass: Compositional and Functional Analysis of Soil Microbial Communities. Chichester, UK: Wiley.

    Google Scholar 

  • Schmedahirschmann, G., Loyola, L.I., Reyes, S., Hubert, E., Rodriguez, M., Rodriguez, J. and Dutrabehrens, M. (1994) β-Glucuronidase inhibition and diuretic activity of Fabiana imbricata R and P (Solanaceae). Phytotherapy Res. 8, 485-7.

    Google Scholar 

  • Schulz, M. and Weissenböck, G. (1987) Partial purification and characterization of a luteolin-triglucuronide-specific β-glucuronidase from rye primary leaves (Secale cereale). Phytochem. 26, 933-7.

    Google Scholar 

  • Schulz, M. and Weissenböck, G. (1988a) Dynamics of the tissue-specific metabolism of luteolin glucuronides in the mesophyll of rye primary leaves (Secale cereale). Z. Naturforsch. 43c, 187-93.

    Google Scholar 

  • Schulz, M. and Weissenböck, G. (1988b) Three specific UDP-glucuronate: flavone-glucuronyltransferases from primary leaves of Secale cereale. Phytochem. 27, 1261-7.

    Google Scholar 

  • Sebastiano, M., D'Alessio, M. and Bazzicalupo, P. (1986) β-Glucuronidase mutants of the nematode Caernohabditis elegans. Genetics 112, 459-68.

    Google Scholar 

  • Spoelstra, S.F. (1977) Simple phenols and indoles in anaerobically stored piggery wastes. J. Sci. Fd Agric. 28, 415-23.

    Google Scholar 

  • Stoeber, F. (1957) Sur la biosynthèse induite de la β-glucuronidase chez Escherichia coli. C.R. Acad. Sci. 244, 950-2.

    Google Scholar 

  • Stoeber, F. (1961) Etudes des propriété et de la biosynthèse de la glucuronidase et de glucuronide-perméase chez Escherichia coli. Thèse de Docteur-des-Sciences, Paris, France.

    Google Scholar 

  • Tomašic, J. and Keglevic, D. (1973) The kinetics of hydrolysis of synthetic glucuronic esters and glucuronic ethers by bovine liver and Escherichia coli β-glucuronidase. Biochem. J. 133, 789-95.

    Google Scholar 

  • Tomino, S. and Paigen, K. (1975) Purification and chemical properties of mouse liver lysosomal (L-form) β-glucuronidase. J. Biol. Chem. 250, 8503-9.

    Google Scholar 

  • Vancanneyt, G., Schmidt, R., O'Conner-Sanchez, A., Willmitzer, L. and Rocha-Sosa, M. (1990) Construction of an intron-containing marker gene: Splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol. Gen. Genet. 220, 245-50.

    Google Scholar 

  • Wilkinson, J.E., Twell, D. and Lindsey, K. (1994) Methanol does not specifically inhibit endogenous β-glucuronidase (GUS) activity. Plant Sci. 97, 61-7.

    Google Scholar 

  • Wilson, K.J., Hughes, S.G. and Jefferson, R.A. (1992) The Escherichia coli gus operon: induction and expression of the gus operon in E. coli and the occurrence and use of GUS in other bacteria. In Gallagher, S.R. ed., GUS Protocols: Using the GUS Gene as a Reporter of Gene Expression, San Diego, CA: Academic Press Inc. pp. 7-22.

    Google Scholar 

  • Wozniak, C.A. and Owens, L.D. (1994) Native β-glucuronidase activity in sugarbeet (Beta vulgaris). Physiol. Plant. 90, 763-71.

    Google Scholar 

  • Yamaguchi, H., Matsuura, H., Kasai, R., Tanaka, O., Satake, O., Kohda, H., Izumi, H., Nuno, M., Katsuki, S., Isoda, S., Shoji, J. and Goto, K. (1988) Analysis of saponins of wild Panex ginseng. Chem. Pharmaceut. Bull. 36, 4177-81.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilissen, L.J.W., Metz, P.L.J., Stiekema, W.J. et al. Review: Biosafety of E. coli β-glucuronidase (GUS) in plants. Transgenic Res 7, 157–163 (1998). https://doi.org/10.1023/A:1008832711805

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008832711805

Navigation