Skip to main content
Log in

Role of fungi in marine ecosystems

  • Published:
Biodiversity & Conservation Aims and scope Submit manuscript

Abstract

Marine fungi are an ecological rather than a taxonomic group and comprise an estimated 1500 species, excluding those that form lichens. They occur in most marine habitats and generally have a pantropical or pantemperate distribution. Marine fungi are major decomposers of woody and herbaceous substrates in marine ecosystems. Their importance lies in their ability to aggressively degrade lignocellulose. They may be important in the degradation of dead animals and animal parts. Marine fungi are important pathogens of plants and animals and also form symbiotic relationships with other organisms. The effect of disturbances on marine fungi is poorly investigated. Keystone marine species may exist, especially in mutualistic symbioses. However, as many saprophytes appear to carry out the same function simultaneously, they may be functionally redundant. The need for a concerted effort to investigate the biodiversity and role of marine fungi globally and on as many substrata as possible is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alderman, D.J. and Polglase, J.L. (1986) Are fungal diseases significant in the marine environment? In The Biology of Marine Fungi (S.T. Moss, ed.), pp. 189–98. London: Cambridge University Press.

    Google Scholar 

  • Amon, J.P. (1984) Rhizopidium littoreum: a chytrid from siphonaceous marine algae–an ultra-structural examination. Mycologia 76, 132–9.

    Google Scholar 

  • Barghoorn, E.S. and Linder, D.H. (1944) Marine fungi: their taxonomy and biology. Farlowia 1, 395–467.

    Google Scholar 

  • Blanchette, R.A., Nilsson, T., Daniel, G. and Abad, A. (1990) Biological degradation of wood. In Archaelogical wood, properties, chemistry and conservation (R.M. Rowen and R.J. Barbour, eds), pp 141–76 [Advances in Chemistry Series No. 125]. Washington: American Chemical Society.

    Google Scholar 

  • Blum, L.K., Mills, A.L., Zieman, J.C. and Zieman R.T. (1988) Abundance of bacteria and fungi in seagrass and mangrove detritus. Mar. Ecol. Prog. Ser. 42, 73–8.

    Google Scholar 

  • Boullard, B. (1958) Natural re-establishment of vesicular-arbuscular mycorrhizae following strip mine reclamation in Wyoming.. J. Appl. Ecol. 17, 139–47.

    Google Scholar 

  • Bower, S. (1986) Labyrinthuloides haliotidis n. sp. (Protozoa: Labyrinthomorpha), a pathogenic parasite of small juvenile abalone in a British Columbia mariculture facility. Can. J. Zool. 65, 1996–2007.

    Google Scholar 

  • Bremer, G.B. (1995) Lower marine fungi (Labyrinthulomycetes) and decay of mangrove leaf litter. Hydrobiologia 295, 89–95.

    Google Scholar 

  • Chalermpongse, A. (1991) Fungal diseases in mangrove forest ecosystem. In: Proceedings of the 5th Silvicultural Seminar. 27-29 March, 1991 pp. 307–338. Thailand, Bangkok: Royal Forest Department.

    Google Scholar 

  • Eaton, R.A. and Hale, M.D. (1993) Wood Decay Pests and Prevention. London: Chapman and Hall.

    Google Scholar 

  • Farr, D.F., Bills, G.F., Chamuris, G.P. and Rossman, A.Y. (1989) Fungi on Plants and Plant Products in the United States. Washington: The American Phytopathological Society Press.

    Google Scholar 

  • Fell, J.W. and Master, I.M. (1973) Fungi associated with the degradation of mangrove (Rhizophora mangle L.) leaves in South Florida. In Estuarine Microbial Ecology (L.H. Stevenson & R.R. Colwell, eds), pp. 455–66. USA University of South Carolina Press.

  • Fengel and Wegener (1989) Wood. New York: De Gruyter.

    Google Scholar 

  • Fletcher, A. (1975) Key for identification of British marine and maritime lichens I. Siliceous rock shore species. Lichenologist 7, 1–52.

    Google Scholar 

  • Garrettson-Cornell, L. and Simpson, J. (1984) Three new marine Phytophthora species from New South Wales. Mycotaxon 19, 453–70.

    Google Scholar 

  • Hawksworth, D.L. (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol. Res. 95, 641–55.

    Google Scholar 

  • Hawksworth, D.L., Kirk, P.M., Sutton, B.C. and Pegler, D.N. (1995) Ainsworth & Bisby's Dictionary of the Fungi. 8th edition. Wallingford: CAB International.

    Google Scholar 

  • Ho, W.H. and Hyde K.D. (1996) Pterosporidium gen. nov. to accommodate two species of Anthostomella from mangrove leaves. Can. J. Bot. 74, 1826–9.

    Google Scholar 

  • Ho, W.H. and Hyde K.D. (1997) Fungi associated with leaf spots of mangroves in Hong Kong. Mycoscience: in press.

  • Holt, D.M. and Jones, E.B.G. (1983) Bacterial degradation of lignified wood cell walls in anaerobic aquatic habitats. Appl. Environ. Microbiol. 46, 722–7.

    Google Scholar 

  • Hutchings, P. and Saenger, P. (1987) Ecology of Mangroves. St Lucia: University of Queensland Press.

    Google Scholar 

  • Hyde, K.D. (1988) Studies on the tropical marine fungi of Brunei. Bot. J. Linn. Soc. 98, 135–51.

    Google Scholar 

  • Hyde, K.D. (1989a) Ecology of tropical marine fungi. Hydrobiologia 178, 199–208.

    Google Scholar 

  • Hyde, K.D. (1989b) Vertical zonation of intertidal mangrove fungi. In Recent Advances in Microbial Ecology (T. Hattori, Y. Ishida, Y. Maruyama, R.Y. Morita and A. Uchida, eds), pp. 302–6. Tokyo: Japan Scientific Societies Press.

    Google Scholar 

  • Hyde, K.D. (1996) Marine fungi. In Fungi of Australia. Vol 1B (C. Grgurinovic and K. Mallett, eds), pp. 39–64. Canberra: ABRS/CSIRO.

    Google Scholar 

  • Hyde, K.D. and Cannon, P.A. (1992) Polystigma sonneratiae causing leaf spots on the mangrove genus Sonneratia. Aust. Syst. Bot. 5, 415–20.

    Google Scholar 

  • Hyde, K.D. and Lee, S.Y. (1995) Ecology of mangrove fungi and their role in nutrient cycling: what gaps occur in our knowledge? Hydrobiologia 295, 107–18.

    Google Scholar 

  • Ito, T. and Nakagiri, A. (1997) A mycofloral study on mangrove mud in Okinawa, Japan. Institute of Fermentation, Osaka, Research Communications 18, 32–9.

    Google Scholar 

  • Johnson, P.T. (1983) Diseases caused by viruses, rickettsiae, bacteria and fungi. In The Biology of Crustacea Vol. 6 Pathobiology (A.J. Provenzano, ed.), pp. 1–78. New York: Academic Press.

    Google Scholar 

  • Jones, E.B.G. (ed.) (1976) Recent Advances in Aquatic Mycology. London: Elek Science.

    Google Scholar 

  • Jones, E.B.G. (1993) Tropical marine fungi. In Aspects of Tropical Mycology (S. Isaac, J.C. Frankland, R. Watling and A.J.S. Whalley, eds), pp. 73–89. Cambridge: Cambridge University Press.

    Google Scholar 

  • Jones, E.B.G. (1994) Fungal adhesion. Mycol. Res. 98, 961–81.

    Google Scholar 

  • Jones, E.B.G. (1995) Ultrastructure and taxonomy of the aquatic ascomycetous order Halos-phaeriales. Can. J. Bot. 73 (suppl.), 5790–801.

    Google Scholar 

  • Jones, E.B.G. and Alias S.A. (1997) Biodiversity of mangrove fungi. In Biodiversity of tropical microfungi (K.D. Hyde, ed), pp. 71–92. Hong Kong: Hong Kong University Press.

    Google Scholar 

  • Jones, E.B.G. and Jennings, D.H. (1964) The effect of salinity on the growth of marine fungi in comparison with non-marine species. Trans. Br. Mycol. Soc. 47, 619–25.

    Google Scholar 

  • Jones, E.B.G. and Mitchell, J.I. (1996) Biodiversity of marine fungi. In Biodiversity: International Biodiversity Seminar (A. Cimerman and N. Gunde-Cimerman, eds), pp. 31–42. Ljubljana: National Inst. Chemistry and Slovenia National Commission for UNESCO.

    Google Scholar 

  • Kerwin, J.L., Johnson, L.M., Whisler, H.C. and Tuiniga, A.R. (1992) Infection and morphogenesis of Pythium marinum in species of Porphyra and other red algae. Can. J. Bot. 70, 1017–4.

    Google Scholar 

  • Khan A.G. (1974) The occurrence of mycorrhizas in halophytes, hydrophytes and xerophytes and of endogone spores in adjacent soils. J. Gen. Microbiol. 81, 7–14.

    Google Scholar 

  • Khan, A.G. and Belik, M. (1995) Occurrence and ecological significance of mycorrhizal symbiosis in aquatic plants. In Mycorrhiza (A. Varma and B. Hock, eds), pp. 628–66. Berlin: Springer-Verlag.

    Google Scholar 

  • Kohlmeyer, J. and Kohlmeyer, E. (1969) Ecological notes on fungi in mangrove forests. Trans. Brit. Mycol. Soc. 53, 237–50.

    Google Scholar 

  • Kohlmeyer, J. and Kohlmeyer, E. (1979) Marine Mycology: The Higher Fungi. London: Academic Press.

    Google Scholar 

  • Kohlmeyer, J. and Volkmann-Kohlmeyer, B. (1991) Illustrated key to the filamentous fungi. Bot. Mar. 34, 1–61.

    Google Scholar 

  • Kohlmeyer, J., Volkmann-Kohlmeyer, B. and Eriksson, O.E. (1996) Fungi on Juncus roemerianus. 8. New bitunicate ascomycetes. Can. J. Bot. 74, 1830–40.

    Google Scholar 

  • Lee, S.Y. (1995) Mangrove outwelling: a review. Hydrobiologia 295, 203–12.

    Google Scholar 

  • Lee, B.K.H. and Baker, G.E. (1972) An ecological study of the soil microfungi in a Hawaiian mangrove swamp. Pac. Sci. 26, 1–10.

    Google Scholar 

  • Lightner, D.V. (1988) Black gill syndrome of penaeid shrimp. In Disease Diagnosis and Control in North American Marine Aquaculture, Developments in Aquaculture and Fisheries Science. Vol. 17. edn. 2 (C.J. Sinderman and D.V. Lightner, eds), pp. 86–8. New York: Elsevier Scientific Publishing.

    Google Scholar 

  • McCarthy, P.M. (1991) Notes on Verrucariaceae (Lichenes): 2. Muelleria 7, 317–32.

    Google Scholar 

  • McLean, N. and Porter, D. (1987) Lesions produced by a thraustochytrid in Tritonia diomedea (Mollusca: Gastropoda: Nudibranchia) J. Invert. Pathol. 39, 223–5.

    Google Scholar 

  • Mason, E. (1928) Note on the presence of mycorrhiza in the roots of salt marsh plants. New Phytol. 27, 193–5.

    Google Scholar 

  • Maxwell, G.S. (1968) Pathogenicity and salinity tolerance of Phytophthora sp. isolated from Avicennia resinifera (Forst F.) -- some initial investigations. Tane 14, 13–23.

    Google Scholar 

  • Mohankumar, V. and Mahadevan, A. (1986) Survey of vesicular-arbuscular mycorrhizae in mangrove vegetation. Curr. Sci. 55, 936.

    Google Scholar 

  • Molina, F.I. (1986) Petersenia pollagaster (oomycetes), an invasive fungal pathogen of Chondrus crispus (Rhodophyceae) In The Biology of Marine Fungi (S.T. Moss, ed), pp. 165–76. London: Cambridge University Press.

    Google Scholar 

  • Mouzouras, R. (1989) Soft rot decay of wood by marine fungi. J. Inst. Wood. Sci. 11, 193–201.

    Google Scholar 

  • Mouzouras, R., Jones, E.B.G., Venkatasamy, R. and Moss, S.T. (1986) Decay of wood by microorganisms in aquatic habitats. Rec. Ann. Conv. B.W.P.A. 1986: 1–18.

  • Moss, S.T. (ed.) (1986) The Biology of Marine Fungi. Cambridge: Cambridge University Press.

    Google Scholar 

  • Muehlstein, L.K., Porter, D. and Short, F.T. (1988) Labyrinthula sp., a marine slime mold producing the symptoms of wasting disease in eelgrass, Zostera marina. Mar. Biol 99, 464–72.

    Google Scholar 

  • Nag Raj, T.R. and Ponnapa, K.M. (1968) Urohendersonia pongamiae sp. nov. Curr Sci. 37, 416–7.

    Google Scholar 

  • Nakagiri, A., Newell, S.Y., Ito, T. and Tan, T.K. (1996) Biodiversity and ecology of the oomycetous fungus, Halophytophthora. In Biodiversity and the Dynamics of Ecosystems. [DIWPA series. Vol.1] (I.M. Turner, C.H. Diong, S.S.L. Lim, and P.K.L. Ng, eds), pp. 273–80. Tokyo: International Network for DIVERSITAS in Western Pacific and Asia.

    Google Scholar 

  • Nakagiri, A., Okane, I., Ito, T. and Katumoto, K. (1997) Lanceispora amphibia gen et sp. nov., a new amphisphaeriaceous ascomycete inhabiting senescent and fallen leaves of mangrove. Mycoscience 38, 207–13.

    Google Scholar 

  • Nakagiri, A., Tokumasu, S., Araki, H., Koreeda, S. and Tubaki, K. (1989) Succession of fungi in decomposing mangrove leaves in Japan. In Recent Advances in Microbial Ecology (T. Hattori, Y. Ishida, Y. Maruyama, R. Morita and A. Uchida (eds.), pp. 297–301. Tokyo: Japan Scientific Society Press.

    Google Scholar 

  • Newell, S.Y. (1976) Mangrove fungi: The succession in the mycoflora of red mangrove (Rhizophora mangle L.) seedlings. In: Recent Advances in Aquatic Mycology, (E.B.G. Jones, ed.), pp. 51–91. London, Elek Science.

    Google Scholar 

  • Newell, S.Y. (1984) Bacterial and fungal productivity in the marine environment: a contrastive overview. Colloque Int. Cent. Natn. Rech. Scient. (Marseille) 331, 133–9.

    Google Scholar 

  • Newell, S.Y. (1992) Estimating fungal biomass and productivity in decomposing litter. In The Fungal Community, 2 edition (G.C. Carroll and D.T. Wicklow, eds), pp. 521–61. New York: Marcel Dekker.

    Google Scholar 

  • Newell, S.Y. (1993) Decomposition of shoots of a salt-marsh grass. Methodology and dynamics of microbial assemblages. Adv. Microb. Ecol. 13, 301–26.

    Google Scholar 

  • Newell, S.Y. (1994) Ecomethology for organoosmotrophs: Prokaryotic unicellular versus eukaryotic mycelial. Microb. Ecol. 28, 151–7.

    Google Scholar 

  • Newell, S.Y. (1996) Established and potential impacts of eukaryotic mycelial decomposers in marine/terrestrial ecotones. J. Exp. Mar. Biol. Ecol. 200, 187–206.

    Google Scholar 

  • Newell S.Y. and Fell, J. W. (1992) Ergosterol content of living and submerged, decaying leaves and twigs of red mangrove. Can. J. Microbiol. 38, 979–82.

    Google Scholar 

  • Newell, S.Y. and Fell, J.W. (1994) Parallel testing of media for measuring frequencies of occurrence for Halophytophthora spp. (oomycetes) from decomposing mangrove leaves. Can. J. Microbiol. 40, 251–6.

    Google Scholar 

  • Newell, S.Y. and Fell, J.W. (1995) Do Halophythopthoras (marine Pythiaceae) rapidly occupy fallen leaves by intraleaf mycelial growth? Can J Bot. 73, 761–5.

    Google Scholar 

  • Newell, S.Y. and Fell, J.W. (1997) Competition among mangrove oomycetes, and between oomycetes and other microbes. Aquat. Microbial Ecol. 12, 21–8.

    Google Scholar 

  • Newell, S.Y., Porter, D. and Lingle, W.L. (1995) Lignocellulolysis by ascomycetes (fungi) of a saltmarsh grass (smooth cordgrass). Microsc. Res. Techn. 33, 32–46.

    Google Scholar 

  • Nicolson, T. H. (1960) Mycorrhizae in the Gramineae. II. Development in different habitats, particularly sand dunes. Trans. Brit. Mycol. Soc. 43, 132–45.

    Google Scholar 

  • Noga, E.J. (1990) A synopsis of mycotic diseases of marine fishes and invertebrates. Pathology in Marine Science, pp. 143–59. New York: Academic Press.

    Google Scholar 

  • Norton, J.H., Thomas, A.D. and Barker, J.R. (1994) Fungal infection in the cultured juvenile boring clam Tridacna crocea. J. Invert. Pathol. 64, 273–5.

    Google Scholar 

  • Pegg, K.G., Gillespie, N.C. and Forsberg, L.I. (1980) Phytophthora spp. associated with mangrove death in central coastal Queensland, Australas. Pl. Pathol. 9, 6–7.

    Google Scholar 

  • Pointing, S.B., Vrijmoed, L.L.P. and Jones, E.B.G. (1998) A qualitative assessment of lignocellulose degrading enzyme activity in marine fungi. Bot. Mar. 41, 293–298.

    Google Scholar 

  • Polglase, J.L. (1980) A preliminary report on the thraustochytrid(s) and labyrinthulid(s) associated with a pathological condition in the lesser octopus Eledone cirrhosa. Bot. Mar. 23, 699–706.

    Google Scholar 

  • Polglase, J.L., Alderman, D.J. and Richards, R.H. (1986) Aspects of the progress of mycotic infections in marine animals. In The Biology of Marine Fungi (S.T. Moss, ed.), pp. 155–64. London: Cambridge University Press.

    Google Scholar 

  • Porter, D. (1986) Mycoses of marine organisms: an overview. In The Biology of Marine Fungi (S.T. Moss, ed.), pp. 141–153. London: Cambridge University Press.

    Google Scholar 

  • Raghukumar, C. (1986) Thraustochytrid fungi associated with marine algae. Ind. J. Mar. Sci. 15, 121–2.

    Google Scholar 

  • Raghukumar, C. (1987a) Fungal parasite of the green alga Chaetomorpha media. Dis. Aquat. Org. 3, 147–50.

    Google Scholar 

  • Raghukumar, C. (1987b) Fungal parasites of marine algae from Mandapam (South India). Dis. Aquat. Org. 3, 137–45.

    Google Scholar 

  • Raghukumar, C. and Raghukumar, S. (1991) Fungal invasion of massive corals. Mar. Ecol. 12, 251–60.

    Google Scholar 

  • Raghukumar, C., Raghukumar, S., Chinaraj, A., Chandramohan, D., D'Souza, T.M. and Reddy, C.A. (1994) Laccase and other lignocellulose modifying enzymes of marine fungi isolated form the coast of India. Bot. Mar. 35, 512–27.

    Google Scholar 

  • Raghukumar, S., Sharma, S., Raghukumar, C., Sathe-Pathak, V. and Chandramohan, D. (1995) Thraustochytrid and fungal component of marine detritus. IV. Laboratory studies on decomposition of leaves of the mangrove Rhizophora apiculata Blume. J. Exp. Mar. Biol. Ecol. 183, 113–31.

    Google Scholar 

  • Rand, T.G. (1996) Fungal diseases of fish and shell fish. In The Mycota. Vol. VI. Human and Animal Relationships (K. Esser and P.A. Lemke, eds), pp. 297–313. Berlin: Springer-Verlag

    Google Scholar 

  • Rheinheimer, G. (ed.) (1992) Aquatic Microbiology. 4th edition. Chichester: John Wiley and Sons.

    Google Scholar 

  • Rohrmann, S. and Molitoris, H.P. (1992) Screening for wood decay enzymes in marine fungi. Can. J. Bot. 70, 2116–23.

    Google Scholar 

  • Rozema, J., Aep, W., van Diggelen, J., van Esbroek, M., Broekman, R. and Punte, H. (1986) Occurrence and ecological significance of vesicular-arbuscular mycorrhiza in the salt marsh environment. Acta Bot. Neerl. 35, 457–62.

    Google Scholar 

  • Santesson, R. (1939) Amphibious pyrenolichens. I. Ark. Bot. 29A, 1–68.

    Google Scholar 

  • Scherrer, P. and Miller, G. (1989) Biodegradation of crude oil in an experimentally polluted peaty mangrove soil. Mar. Poll. Bull. 20, 430–32.

    Google Scholar 

  • Schnepf, E. and Deichgrber, G. (1978) Development and ultrastructure of marine, parasitic oomycete, Lagenisma coscinodisci (Lagenidiales): the infection. Arch. Microbiol. 116, 133–9.

    Google Scholar 

  • Singh, A.P., Nilsson, T. and Daniel, G. (1990) Bacterial attack of Pinus sylvestris wood under near araerobic conditions. J. Inst. Wood Sci. 11, 237–49.

    Google Scholar 

  • Singh, N. and Steinke, T.D. (1992) Colonization of leaves of Bruguiera gymnorrhiza (Rhizophor-aceae) by fungi, and in vitro cellulolytic activity of the isolates. SA J. Bot. 58, 525–9.

    Google Scholar 

  • Smolowitz, R.M., Bullis, R.A. and Abt, D.A. (1992) Mycotic bronchitis in the laboratory-maintained hermit crabs (Pagurus spp.). J. Crust. Biol. 12, 161–8.

    Google Scholar 

  • Stewart, J.E. (1984) Lobster diseases. Helogander Meeresuntersuchungen 37, 243–54.

    Google Scholar 

  • Sutherland, J.B., Crawford, D.L. and Speedie, M.K. (1982) Decomposition of 14C-labelled maple and spruce lignin by marine fungi. Mycologia 74, 511–3.

    Google Scholar 

  • Ulken, A. (1984) The fungi of the mangle ecosystem. In Hydrobiology of the Mangle (F.D. Por and I. Dor, eds), pp. 27–33. The Hague: W Junk.

    Google Scholar 

  • van der Meer, J.P. and Pueschel, C.M. (1985) Petersenia palmariae n.sp. (Oomycetes): a pathogenic parasite of red alga Palmaria mollis (Rhodophyceae). Can. J. Bot. 63, 404–8.

    Google Scholar 

  • Vrijmoed, L.L.P. and Tam. N.F.Y. (1990) Fungi associated with leaves of Kandelia candel (L.) Druce in litter bags on the mangrove floor of a small subtropical mangrove community in Hong Kong. Bull. Mar. Sci. 47, 261–2.

    Google Scholar 

  • Wada, S., Nakamura, K., and Hatai, K. (1995) First case of Ochroconis humicola infection in cultured fish in Japan. Fish Pathol. 30, 125–6.

    Google Scholar 

  • West, A.W. (1988) Specimen preparation, stain type, and extraction and observation procedures as factors in the estimation of soil mycelial lengths and volumes by light microscopy. Biol. Fertil. Soils 7, 88–94.

    Google Scholar 

  • Weste, G., Cahill, D. and Stamps, D.J. (1982) Mangrove dieback in North Queensland, Australia. Trans. Brit. Mycol. Soc. 79, 165–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hyde, K.D., Jones, E.G., Leaño, E. et al. Role of fungi in marine ecosystems. Biodiversity and Conservation 7, 1147–1161 (1998). https://doi.org/10.1023/A:1008823515157

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008823515157

Navigation