Skip to main content
Log in

Lattice Distortions and Charge Carriers in Cuprates

  • Conference Report
  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

A phenomenological model with itinerant bands and local states trapped by thelattice on the Cu-sites, is discussed to describe global features ofcuprates. Relative energy positions of localized and itinerant states beingtuned (thermodynamically or by doping), the system must undergo first-orderMott metal-insulator transition. Decreasing the local level (from themetallic end of a stoichiometric compound), charge separation instabilityoccurs first before the Mott transition. Crossing and hybridization betweenlocal (flat) and itinerant bands introduce a structure in density of stateswhich may account for “pseudogap” features in cuprates. Modelresults in polaronic lattice effects and is rich enough to serve as aphenomenology of cuprates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. G. Loeser et al., Science 273, 325 (1996).

    PubMed  Google Scholar 

  2. H. Ding et al., Nature (London) 382, 51 (1996).

    Google Scholar 

  3. E. Kaldis et al., Phys. Rev. Lett. 79, 4894 (1997).

    Google Scholar 

  4. R. Micnas and S. Robaszkiewicz, in High-T c Superconductivity 1996: Ten Years After the Discovery, E. Kaldis et al., eds. (NATO ASI Series, Kluwer Academic Publishers, London, 1997), p. 31.

    Google Scholar 

  5. D. Mihailovic and K. A. Müller, ibid. p. 243; D. Mihailovic, p. 257.

    Google Scholar 

  6. L. P. Gor'kov and A. V. Sokol, JETP Lett., 46, 420 (1987).

    Google Scholar 

  7. P. Coleman, Phys. Rev. B29, 3035 (1984).

    Google Scholar 

  8. A. J. Millis and P. A. Lee, Phys. Rev. B35, 3394 (1987).

    Google Scholar 

  9. N. L. Saini et al., Phys. Rev. Lett. 79, 3467 (1997).

    Google Scholar 

  10. V. J. Emery, S. A. Kivelson, and H.-Q. Lin, Phys. Rev. Lett. 64, 475 (1990); S. A. Kivelson, V. J. Emery, and H.-Q. Lin, Phys. Rev. B42, 6523 (1990); V. J. Emery and S. A. Kivelson, Physica C209, 597 (1993).

    PubMed  Google Scholar 

  11. B. Brandow, Phys. Rep. 296, 1 (1998).

    Google Scholar 

  12. L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory (Pergamon Press, New York, 1977).

    Google Scholar 

  13. S. P. Ionov, Sov. Phys.—Izvestia Akad. Nauk, Seria Fiz. 49, 90 (1985); G. M. Eliashberg, JETP Lett. Suppl. 46, 5181 (1987).

    Google Scholar 

  14. J. Tranquada et al., Nature (London) 375, 561 (1995); Phys. Rev. B54, 7489 (1996); J. M. Tranquada, J. D. Axe, N. Ichikawa, A. R. Moodenbaugh, Y. Nakamura, and S. Uchida, Phys. Rev. Lett. 78, 338 (1997).

    Google Scholar 

  15. N. L. Saini et al., Phys. Rev. B57, R11101 (1998).

    Google Scholar 

  16. B. O. Wells et al., Science 277, 1067 (1997).

    Google Scholar 

  17. X. Xiong et al., Phys. Rev. Lett. 76, 2997 (1996).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gor'kov, L.P. Lattice Distortions and Charge Carriers in Cuprates. Journal of Superconductivity 12, 9–13 (1999). https://doi.org/10.1023/A:1007744830322

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007744830322

Navigation