Skip to main content
Log in

Cell Adhesion Molecules in the Development and Progression of Malignant Melanoma

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Cell adhesion molecules belonging to the integrin, cadherin and immunoglobulin superfamilies have been implicated in tumor progression in cutaneous melanoma. Expression of the αvβ3 integrin first appears with the change from radial to vertical growth, a step which is associated with the development of metastatic potential. VLA-4 expression is characteristic of advanced primary tumors and may mediate interaction of the tumor cells with VCAM-1 on vascular endothelium. Expression of these integrins is a marker of poor prognosis in patients and can confer invasive (αvβ3) and metastatic (VLA-4) properties to human melanoma cells injected into nude mice. Expression of the immunoglobulin superfamily molecules MUC18/MCAM and ICAM-1 are associated with primary tumors and metastases. MUC18/MCAM expression confers metastatic potential and increased tumorigenicity to human melanoma cells. Expression of ICAM-1 has been shown to be a marker of poor prognosis in stage I tumors and interfering with its expression inhibits experimental metastasis by melanomas in nude mice. E-cadherin is used by epidermal melanocytes to interact with neighboring keratinocytes. Changes in E-cadherin expression and cellular localization is first observed in the radial growth phase, the earliest stage in melanoma development. Loss of E-cadherin function is associated with upregulation or induction of MUC18/MCAM and αvβ3 in melanocytic cells in vitro and with alterations in the levels and cellular distribution of the transcriptional regulator β-catenin in melanomas in vivo. These observations suggest that disturbances in E-cadherin function is not only important in carcinomas but may also be a critical event in melanoma tumor progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fidler IJ: Biology of melanoma metastasis. In: Bach CM, Houghton AN, Sober AJ, Soong S (eds) Cutaneous Melanoma. Quality Medical Publishing, 1998, pp 493-516

  2. Huang Y-W, Vitetta ES: Adhesion molecules as targets for cancer therapy. Histo Histopathol 12: 467-477, 1997

    Google Scholar 

  3. Nesbit M, Herlyn M: Adhesion receptors in human melanoma progression. Invasion Metastasis 14: 131-146, 1994

    Google Scholar 

  4. Hart IR, Birch M, Marshall JF: Cell adhesion receptor expression during melanoma progression and metastasis. Cancer Metastasis Rev 10: 115-128, 1991

    Google Scholar 

  5. Clark WH, Elder DE, Guerry D4, Epstein MN: A study of tumor progression. The precursor lesions of superficial spreading and nodular melanoma. Human Pathol 15: 1147-1165, 1984

    Google Scholar 

  6. Clark WH, Elder DE, Guerry D, Braitman LE, Trock BJ, Schultz D, Synnestvedt M, Halpern AC: Model predicting survival in stage I melanoma based on tumor progression. J Natl Cancer Inst 81: 1893-1904, 1989

    Google Scholar 

  7. Guerry D, Synnestvedt M, Elder DE, Schultz D: Lessons from tumor progression: the invasive radial growth phase of melanoma is common, incapable of metastasis, and indolent. J Invest Dermatol 100: 342-345, 1993

    Google Scholar 

  8. Chothia C, Jones EY: The molecular structure of cell adhesion molecules. Ann Rev Biochem 66: 823-862, 1997

    Google Scholar 

  9. Edelmann GM: Cell adhesion molecules in the regulation of animal form and tissue pattern. Ann Rev Cell Biol 2: 81-116, 1986

    Google Scholar 

  10. Springer TA: Traffic signals on endothelium for lymphocyte recirculation. Ann Rev Physiol 57: 827-872, 1995

    Google Scholar 

  11. Buck CA: Adhesion mechanisms controlling cell-cell and cell-matrix interactions during the metastatic process. In: Mendelsohn J, Howley PM, Israel MA, Liotta LA (eds) The Molecular Basis of Cancer. W.B. Saunders, 1995, pp 172-205

  12. Danen EH, Van Muijen GN, Ruiter DJ: Role of integrins as signal transducing cell adhesion molecules in human cutaneous melanoma. Cancer Surv 24: 43-65, 1995

    Google Scholar 

  13. Mortarini R, Anchini A: From adhesion to signalling: roles of integrins in the biology of human melanoma. Melanoma Res 3: 87-97, 1993

    Google Scholar 

  14. Hynes RO: Integrins: versatility, modulation and signalling in cell adhesion. Cell 69: 11-25, 1992

    Google Scholar 

  15. Hughes PE, Pfaff M: Integrin affinity modulation. Trends Cell Biol 8: 359-364, 1998

    Google Scholar 

  16. Sanchez-Amdrid P, Cabanas C, Sanchez-Madrid F: Regulation of integrin function. Sem Cancer Biol 7: 99-109, 1996

    Google Scholar 

  17. Natali PG, Nicotra MR, Cavaliere R, Giannarelli D, Bigotti A: Tumor progression in human malignant melanoma is associated with changes in alpha 6/beta 1 laminin receptor. Int J Cancer 49: 168-172, 1991

    Google Scholar 

  18. Moretti S, Martini L, Berti E, Pinzi C, Giannotti B: Adhesion molecule profile and malignancy of melanocytic lesions. Melanoma Res 3: 235-239, 1993

    Google Scholar 

  19. Schadendrof D, Gawlik C, Haney U, Ostmeier H, Suter L, Czarnetzki BM: Tumour progression and metastatic behaviour in vivo correlates with integrin expression on melanocytic tumours. J Pathol 170: 429-434, 1993

    Google Scholar 

  20. Schadendorf D, Heidel J, Gawlik C, Suter L, Czarnetzki BM: Association with clinical outcome of expression of VLA-4 in primary cutaneous malignant melanoma as well as P-selectin and E-selectin on intratumoral vessels. J Natl Cancer Inst 87: 366-371, 1995

    Google Scholar 

  21. Albeda SM, Mette SA, Elder DE, Stewart R, Damajanovich L, Herlyn M, Buck CA: Integrin distribution in malignant melanoma: association of the β3 subunit with tumor progression. Cancer Res 50: 6757-6764, 1990

    Google Scholar 

  22. Danen EH, Jansen KF, Van Kraats AA, Cornelissen IM, Ruiter DJ, Van Muijen GN: Alpha v-integrins in human melanoma: gain of alpha v beta 3 and loss of alpha v beta 5 are related to tumor progression in situ but not to metastatic capacity of cell lines in nude mice. Int J Cancer 61: 491-496, 1995

    Google Scholar 

  23. Danen EH, Ten Berge PJ, Van Muijen GN, Van't Hof Grootenboer AE, Brocker EB, Ruiter DJ: Emergence of alpha 5 beta 1 fibronectin-and alpha v beta 3 vitronectin-receptor expression in melanocytic tumour progression. Histopathology 24: 249-256, 1994

    Google Scholar 

  24. van Belle PA, Elenitsas R, Satyamoorthy K, Wolfe JT, Guerry D, Schuchter L, van Belle TJ, Albelda SM, Tahin P, Herlan M, Elder DE: Progression-related expression of beta3 integrin in melanomas and nevi. Hum Pathol30: 562-567, 1999

    Google Scholar 

  25. Lobb RR, Hemler ME: The pathophysiologic role of alpha4 integrins in vivo. J Clin Invest 94: 1722-1728, 1994

    Google Scholar 

  26. Rice GE, Bevilacqua MO: An inducible endothelial cell surface glycoprotein mediates melanoma adhesion. Science 246: 1303-1306, 1989

    Google Scholar 

  27. Okahara H, Yagita H, Miyake K, Okumura K: Involvement of very late activation antigen 4 (VLA-4) and vascular cell adhesion molecule 1 (VCAM-1) in tumor necrosis factor alpha enhancement of experimental metastasis. Cancer Res 54: 3233-3236, 1994

    Google Scholar 

  28. Garofalo A, Chirivi RG, Foglieni C, Pigott R, Mortarini R, Martin Padura I, Anichini A, Gearing AJ, Sanchez Madrid F, Dejana E: Involvement of the very late antigen 4 integrin on melanoma in interleukin 1-augmented experimental metastases. Cancer Res 55: 414-419, 1995

    Google Scholar 

  29. Danen EHJ, Marcinklewicz C, Cornelissen IMHA, Van Kraats AA, Pachter JA, Ruiter DJ, Niewiarowski S, Van Muijen GN: The disintegrin eristostatin interferes with integrin alpha 4 beta 1 function and with experimental metastasis of human melanoma cells. Exp Cell Res 238: 188-196, 1998

    Google Scholar 

  30. Qian F, Vaux DL, Weissman IL: Expression of the integrin alpha 4 beta 1 on melanoma cells can inhibit the invasive stage of metastasis formation. Cell 77: 335-347, 1994

    Google Scholar 

  31. Altevogt P, Hubbe M, Ruppert M, Lohr J, von Hoegen P, Sammar M, Andreq DP, McEvoy L, Humphries MJ, Butcher EC: The alpha4 integrin chain is a ligand for alpha 4 beta 7 and alpha 4 beta 1. J Exp Med 182: 345-355, 1995

    Google Scholar 

  32. Huhtala P, Humphries MJ, McCarthy JB, Tremble PM, Werb Z, Damsky CH: Cooperative signalling by alpha 5 beta 1 and alpha 4 beta 1 integrin regulates metalloproteinase gene expression in fibroblasts adhering to fibronectin. J Cell Biol 129: 867-879, 1995

    Google Scholar 

  33. Marshall JF, Hart IR: The role of alpha v integrins in tumour progression and metastasis. Sem Cancer Biol 7: 129-138, 1996

    Google Scholar 

  34. Nip J, Brodt P: The role of the integrin vitronectin receptor, alpha v beta 3 in melanoma metastasis. Cancer Metastasis Rev 14: 241-252, 1995

    Google Scholar 

  35. Montgomery AM, Becker JC, Siu CH, Lemmon VP, Cheresh DA, Pancook JD, Zhao X, Reisfeld RA: Human neural cell adheison molecule L1 and rat homologue NILE are ligands for integrin alpha v beta 3. J Cell Biol 132: 475-485, 1996

    Google Scholar 

  36. Brooks PC, Clark RA, Cheresh DA: Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264: 569-571, 1994

    Google Scholar 

  37. Rüegg C, Yilmaz A, Bieler G, Bamat J, Chaubert P, Lejeune FJ: Evidence for the involvement of endothelial cell integrin alphaV beta3 in the disruption of the tumor vasculature induced by TNF and IFN gamma. Nature Med 4: 408-414, 1998

    Google Scholar 

  38. Natali PG, Nicotra MRDFF, Bigotti A: Expression of fibronectin, fibonectin isoforms and integrin receptors in melanocytic lesions. Brit J Cancer 71: 1243-1247, 1995

    Google Scholar 

  39. Hieken TJ, Farolan M, Ronan SG, Shilkaitis A, Wild L, Das Gupta TK: β3 integrin expression in melanoma predicts subsequent metastasis. J Surg Res 63: 169-173, 1996

    Google Scholar 

  40. Hieken TJ, Ronan SG, Farolan M, Shilkaitis AL, Das Gupta TK: Molecular prognostic markers in intermediate-thickness cutaneous malignant melanoma. Cancer 85: 375-382, 1999

    Google Scholar 

  41. Natali PG, Hemby CV, Felding-Habermann B, Liang B, Nicotra MR, Di Filippo F, Giannarelli D, Temponi M, Ferrone S: Clinical significance of alpha(v)beta3 integrin and intercelluar adhesion molecule-1 expression in cutaneous malignant melanoma lesions. Cancer Res 57: 1554-1560, 1997

    Google Scholar 

  42. Danen EHJ, Van Kraats AA, Cornelissen IMHA, Ruiter DJ, Van Muijen GN: Integrin β3 cDNA transfection into a highly metastatic alpha v β3 negative human melanoma cell line inhibits invasion and experimental metastasis. Biochem Biophys Res Commun 226: 75-81, 1996

    Google Scholar 

  43. Boukerche H, Benchaibi M, Berthier Vergnes O, Lizard G, Bailly M, McGregor JL: Two human melanoma cell-line variants with enhanced in vivo tumor growth and metastatic capacity do not express the beta 3 integrin subunit. Eur J Biochem 220: 485-491, 1994

    Google Scholar 

  44. Hsu MY, Shih D-T, Meier FE, Van Belle P, Hsu J-Y, Elder DE, Buck CA, Herlyn M: Adneoviral gene transfer of β3 integrin subunit induced conversion from radial to vertical growth phase in primary human melanoma. Am J Pathol 153: 1435-1442, 1998

    Google Scholar 

  45. Satyamoorthy K, Dejesus E, Linnenbach A, Kraj B, Kornreich DL, Rendle S, Elder DE, Herlyn M: Melanoma cell lines from different stages of progression and their biological and molecular analyses. Melanoma Res 7: S35-S42, 1997

    Google Scholar 

  46. Montgomery AM, Reisfeld RA, Cheresh DA: Integrin alpha v beta 3 rescues melanoma cells from apoptosis in three-dimensional dermal collagen. Proc Natl Acad Sci USA 91: 8856-8860, 1994

    Google Scholar 

  47. Schneller M, Vuori K, Ruoslahti E: Alpha v β3 integrin associated with activated insulin and PDGF β receptors and potentiates the biological activity of PDGF. EMBO J 16: 5600-5607, 1997

    Google Scholar 

  48. Seftor REB, Seftor EA, Gehlsen KR, Stetler-Stevenson WG, Brown PD, Ruoslahti E, Hendrix MJC: Role of the alpha v beta 3 integrin in human melanoma cell invasion. Proc Natl Acad Sci USA 89: 1557-1561, 1992

    Google Scholar 

  49. Nip J, Rabbani SA, Shibata HR, Brodt P: Coordinated expression of the vitronectin receptor and the urokinase-type plasminogen activator receptor in metastatic melanoma cells. J Clin Invest 95: 2096-2103, 1995

    Google Scholar 

  50. Burns FR, von Kannen S, Guy L, Raper JA, Kamholz J, Chang S: DM-GRASP, anovel immunoglobulin superfamily axonal surface protein that supports neurite extension. Neuron 7: 209-220, 1991

    Google Scholar 

  51. Pourquie O, Corbel C, La Caer JP, Rossier J, LeDouarin NM: BEN, a surface molecule of the immunoglobulin superfamily expressed in a variety of developing systems. Proc Natl Acad Sci USA 89: 5261-5265, 1992

    Google Scholar 

  52. Bowen MA, Patel DD, Li X, Modrell B, Malacko AR, Wang WC, Marquardt H, Neubauer M, Pesando JM, Francke U, Haynes BF, Aruffo A: Cloning, mapping and characterization of activated leukocyte-cell adhesion molecule (ALCAM), a CD6 ligand. J Exp Med 181: 2213-2220, 1995

    Google Scholar 

  53. Degen WGJ, van Kempen LCLT, Gijzen EGA, van Groningen JJM, van Kooyk Y, Bloemers HPJ, Swart GWM: MEMO, a new cell adhesion molecule in metastasizing human melanoma cell lines, is identical to ALCAM (activated leukocyte cell adhesion molecule). Am J Pathol 152: 805-813, 1998

    Google Scholar 

  54. Johnson JP, Rummel MM, Rothbächer U, Sers C: MUC18: a cell adhesion molecule with a potential role in tumor growth and tumor cell dissemination. Cur Topics Micro Immunol 213(I): 95-105, 1996

    Google Scholar 

  55. Johnson JP: The V-V-C2-C2-C2 cell adhesion molecule subfamily of the immunoglobulin superfamily. In: Kreis T, Vale R (ed) Guidebook to the Extracellular Matrix Anchor and Adhesion Proteins. Oxford University Press, 1999, pp 562-565

  56. Lehmann JM, Holzmann B, Breitbart EW, Schmiegelow P, Riethmüller G, Johnson JP: Discrimination between benign and malignant cells of melanocytic lineage by two novel antigens, a glycoprotein with a molecular weight of 113,000 and a protein with a molecular weight of 76,000. Cancer Res 47: 841-845, 1987

    Google Scholar 

  57. Lehmann JM, Riethmüller G, Johnson JP: MUC18, a marker of tumor progression in human melanoma shows sequence similarity to the neural cell adhesion molecules of the immunoglobulin superfamily. Proc Natl Acad Sci USA 86: 9891-9895, 1989

    Google Scholar 

  58. Holzmann B, Bröcker EB, Lehmann JM, Ruiter DJ, Sorg C, Riethmüller G, Johnson JP: Tumor progression in human melanoma: five stages defined by their antigenic phenotypes. Int J Cancer 39: 466-471, 1987

    Google Scholar 

  59. Denton KJ, Streich J, Garter KC, Harris AL: A study of adhesion molecules as markers of progression in malignant melanoma. J Pathol 167: 187-191, 1992

    Google Scholar 

  60. Shih IM, Elder DE, Speicher D, Johnson JP, Herlyn M: Isolation and functional characterization of the A32 melanoma-associated antigen. Cancer Res 54: 2514-2520, 1994

    Google Scholar 

  61. Kraus A, Masat L, Johnson JP: Analysis of the expression of intercellular adhesion molecule-1 and MUC18 on benign and malignant melanocytic lesions using monoclonal antibodies directed against distinct epitopes and recognizing denatured, non-glycosylated antigen. Melanoma Res 7s: 75-81, 1997

    Google Scholar 

  62. Pickl WF, Majdic O, Fischer GF, Petzelbauer P, Fae I, Waclavicek M, Stöckl JSC, Vidicki T, Aschauer H, Johnson JP, Knapp W: MUC18/MCAM: an activation associated surface molecule of human T lymphocytes. J Immunol 158: 2107-2115, 1997

    Google Scholar 

  63. Bardin N, Frances V, Lesaule G, Horschowski N, George F, Sampol J: Identification of the S-Endo 1 endothelial associated antigen. Biochem Biophys Res Commun 218: 210-216, 1996

    Google Scholar 

  64. Bani MR, Rak J, Adachi D, Wiltshire R, Trent JM, Kerbel RS, Ben-David Y: Multiple features of advanced melanoma recapitulated in tumorigenic variants of early stage (radial growth phase) human melanoma cell lines: evidence for a dominant phenotype. Cancer Res 56: 3075-3086, 1996

    Google Scholar 

  65. Luca M, Hunt B, Bucana CD, Johnson JP, Fidler U, Bar-Eli M: Direct correlation between MUC18 expression and metastatic potential of human melanoma cells. Melanoma Res 3: 35-41, 1993

    Google Scholar 

  66. Xie S, Luca M, Huang S, Gutman M, Reich R, Johnson JP, Bar-Eli M: Expression of MCAM/MUC18 by human melanoma cells leads to increased tumor growth and metastasis. Cancer Res 57: 2295-2303, 1997

    Google Scholar 

  67. Schlagbauer-Wadl H, Jansen B, Müller MPP, Wölf K, Eichler H-G, Perhamberger H, Konak E, Johnson JP: Influence of MUC18/MCAM/CD 146 expression on human melanoma growth and metastasis in scid mice. Int J Cancer 81: 951-955, 1999

    Google Scholar 

  68. Shih I-M, Speicher DW, Hus M-Y, Levine E, Herlyn M: Melanoma cell-cell interactions are mediated through heterophilic Mel-CAM/ligand adhesion. Cancer Res 57: 3835-3840, 1997

    Google Scholar 

  69. Johnson JP, Bar-Eli M, Jansen B, Markhof E: Melanoma progression-associated glycoprotein MUC18/MCAM mediates homotypic cell adhesion through interaction with a heterophilic ligand. Int J Cancer 73: 769-774, 1997

    Google Scholar 

  70. Walsh FS, Doherty P: Neural cell adhesion molecules of the immunoglobulin superfamily: role in axon growth and guidance. Ann Rev Cell Dev Biol 13: 425-456, 1999

    Google Scholar 

  71. Anfosso F, Bardin N, Frances V, Vivier E, Camoin-Jau L, Sampol J, Dignat-George F: Activation of human endothelial cells via S-endo-1 antigen (CD146) stimulates the tyrosine phosphorylation of focal adhesion kinase p125-FAK. J Biol Chem 41: 26852-26856, 1998

    Google Scholar 

  72. Schlaepfer DD, Hunter T: Integrin signalling and tyrosine phosphorylation: just the FAKs? Trends Cell Biol 8: 151-157, 1998

    Google Scholar 

  73. Holzmann B, Johnson JP, Kaudewitz P, Riethmuller G: In situ analysis of antigens on malignant and benign cells of the melanocyte lineage. Differential expression of two surface molecules, gp75 and p89. J Exp Med 161: 366-377, 1985

    Google Scholar 

  74. Johnson JP, Stade BG, Holzman B, Schwäble W, Riethmüller G: De novo expression of cell adhesion molecule ICAM-1 in melanoma and increased risk of metastasis. Proc Natl Acad Sci USA 86: 641-644, 1989

    Google Scholar 

  75. Natali PG, Nicotra MR, Cavaliere R, Bigotti A, Romano G, Temponi M, Ferrone S: Differential expression of intercellular adhesion molecule 1 in primary and metastatic melanoma lesions. Cancer Res 50: 1271-1278, 1990

    Google Scholar 

  76. Miele ME, Bennett CF, Miller BE, Welch DR: Enhanced metastatic ability of TNF-alpha-treated malignant melanoma cells is reduced by intercellular adhesion molecule-1 (ICAM-1, CD54) antisense oligonucleotides. Exp Cell Res 214: 231-241, 1994

    Google Scholar 

  77. Van De Stolpe A, Van Der Saag PT: Intercellular adhesion molecule-1. J Mol Med 74: 13-33, 1996

    Google Scholar 

  78. Mulder WM, Stern PL, Stukart MJ, de Windt E, Butzelaar RM, Meijer S, Ader HJ, Claessen AM, Vermorken JB, Meijer CJ, Wagstaff J, Scheper RJ, Bloemena E: Low intercellular adhesion moelcule 1 and high 5T4 expression on tumor cells correlate with reduced disease-free survival in colorectal carcinoma patients. Clin Cancer Res 3: 1923-1930, 1997

    Google Scholar 

  79. Ogawa Y, Hirakawa K, Nakata B, Fujihara T, Sawada T, Kato Y, Yoshikawa K, Sowa M: Expression of intercellular adhesion molecule-1 in invasive cancer reflects low growth potential, negative lymph node involvement, and good prognosis. Clin Cancer Res 4: 31-36, 1998

    Google Scholar 

  80. Aeed PA, Nakajima M, Welch DR: The role of polymorphonuclear leukocytes (PMN) on the growth and metastatic potential of 13762NF mammary adenocarcinoma cells. Int J Cancer 42: 748-759, 1988

    Google Scholar 

  81. Giavazzi R, Chirivi RGS, Garofalo A, Rambaldi A, Hemingway I, Pigott R, Gearing AJH: Soluble intercellular adhesion molecule 1 is released by human melanoma cells and is associated with tumor growth in nude mice. Cancer Res 52: 2628-2630, 1992

    Google Scholar 

  82. Becker JC, Termeer C, Schmidt RE, Brocker EB: Soluble intercellular adhesion molecule-1 inhibits MHC-restricted specific T cell/tumor interaction. J Immunol 151: 7224-7232, 1993

    Google Scholar 

  83. Takeichi M: Cadherins: a molecular family important in selective cell-cell adhesion. Ann Rev Biochem 59: 237-252, 1990

    Google Scholar 

  84. Yap AS, Brieher WM, Gumbiner BM: Molecular and functional analysis of cadherin-based adherens junctions. Ann Rev Cell Dev Biol 13: 119-146, 1997

    Google Scholar 

  85. Matsuyoshi N, Tanaka T, Toda K, Imamura S: Identification of novel cadherins expressed in human melanoma cells. J Invest Dermatol 108: 908-913, 1997

    Google Scholar 

  86. Hsu M-Y, Wheelock MJ, Johnson KR, Herlyn M: Shifts in cadherin profiles between human normal melanocytes and melanomas. J Invest Dermatol Symp Proc 1: 188-194, 1996

    Google Scholar 

  87. Sanders DSA, Blessing K, Hassan GAR, Bruton R, Marsden JR, Jankowski J: Alterations in cadherin and catenin expression during the biological progression of melanocytic tumours. J Clin Pathol Mol Pathol 52: 151-157, 1999

    Google Scholar 

  88. Birchmeier W, Behrens J. Cadherin expresion in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochem Biophys Acta 1198: 11-26, 1994

    Google Scholar 

  89. Vleminckx K, Vakaet Jr L, Mareel M, Fiers W, Van Roy F: Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell 66: 107-119, 1991

    Google Scholar 

  90. Perl A-K, Wilgenbus P, Dahl U, Semb H, Christofori G: A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 392: 190-193, 1998

    Google Scholar 

  91. Tang A, Eller MS, Hara M, Yaar M, Hirohashi S, Gilchrest BA: E-cadherin is the major mediator of human melanocyte adhesion to keratinocytes in vitro. J Cell Sci 107: 983-992, 1994

    Google Scholar 

  92. Valyi Nagy IT, Hirka G, Jensen PJ, Shih IM, Juhasz I, Herlyn M: Undifferentiated keratinocytes control growth, morphology, and antigen expression of normal melanocytes through cell-cell contact [see comments]. Lab Invest 69: 152-159, 1993

    Google Scholar 

  93. Shih IM, Elder DE, Hsu MY, Herlyn M: Regulation of Mel-CAM/MUC18 expression on melanocytes of different stages of tumor progression by normal keratinocytes. Am J Pathol 145: 837-845, 1994

    Google Scholar 

  94. Cowley GP, Smith ME: Cadherin expression in melanocytic nevi and malignant melanoma. J Pathol 179: 183-187, 1996

    Google Scholar 

  95. Silye R, Karayiannakis AJ, Syrigos KN, Poole S, van Noorden S, Batchelor W, Regele H, Sega W, Boesmueller H, Krausz T, Pignatelli M: E-cadherin/catenin complex in benign and malignant melanocytic lesions. J Pathol 186: 350-355, 1998

    Google Scholar 

  96. Danen EHJ, de Vries TJ, Morandini R, Ghanem GG, Ruiter DJ, van Muijen GNP: E-cadherin expression in human melanoma. Melanoma Res 6: 127-131, 1996

    Google Scholar 

  97. Ozawa M, Engel J, Kemler R: Single amino acid substitutions in one calcium binding site of uvomorulin abolish the adhesive function. Cell 63: 1033-1038, 1990

    Google Scholar 

  98. Robbins PF, El-Gamil M, Yong FL, Kawakami Y, Loftus D, Appella E, Rosenberg SA: A mutated β-catenin gene encodes a melanoma-specific antigen recognized by tumor infiltrating lymphocytes. J Exp Med 183: 1185-1192, 1996

    Google Scholar 

  99. Rubinfield B, Robbins P, El-Gamil M, Albert I, Porfiri E, Polakis P: Stabilization of β-catenin by genetic defects in melanoma cell lines. Science 275: 1790-1793, 1997

    Google Scholar 

  100. Rimm DL, Caca K, Hu G, Harrison FB, Fearon ER: Frequent nuclear/cytoplasmic localization of β-catenin without exon 3 mutations in malignant melanoma. Am J Path 154: 325-329, 1999

    Google Scholar 

  101. Willert K, Nusse R: β-catenin: a key mediator of wnt signaling. Curr Opin Genet Dev 8: 95-102, 1988

    Google Scholar 

  102. Klymkowsky MW, Parr B: The body language of cells: the intimate connection between cell adhesion and behavior. Cell 83: 5-8, 1995

    Google Scholar 

  103. Jankowski JA, Bruton R, Shepherd N, Sanders DSA: Cadherin and catenin biology represent a global mechanism for epithelial cancer progression. J Clin Pathol Mol Pathol 50: 289-290, 1997

    Google Scholar 

  104. Grimm T, Johnson JP: Ectopic expression of carcinoembryonic antigen by a melanoma cell leads to changes in the transcription of two additional cell adhesion molecules. Cancer Res 55: 3254-3257, 1995

    Google Scholar 

  105. Wodarz A, Nusse R: Mechanisms of wnt signaling in development. Ann Rev Cell Dev Biol 14: 59-88, 1998

    Google Scholar 

  106. Novak A, Hsu S-C, Leung-Hagesteijn C, Radeva G, Papkoff J, Montesano R, Roskelley C, Grosschedl R, Dedhar S: Cell adhesion and the integrin-linked kinase regulate the LRF-1 and β-catenin signaling pathways. Proc Natl Acad Sci USA 95: 4374-4379, 1998

    Google Scholar 

  107. Erickson CA: From the crest to the periphery: control of pigment cell migration and lineage segregation. Pigment Cell Res 6: 336-347, 1993

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, J.P. Cell Adhesion Molecules in the Development and Progression of Malignant Melanoma. Cancer Metastasis Rev 18, 345–357 (1999). https://doi.org/10.1023/A:1006304806799

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006304806799

Navigation