Skip to main content
Log in

Investigation of the plastoquinone pool size and fluorescence quenching in thylakoid membranes and Photosystem II (PS II) membrane fragments

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The efficiency of oxidized endogenous plastoquinone-9 (PQ-9) as a non-photochemical quencher of chlorophyll fluorescence has been analyzed in spinach thylakoids and PS II membrane fragments isolated by Triton X-100 fractionation of grana stacks. The following results were obtained: (a) After subjection of PS II membrane fragments to ultrasonic treatment in the presence of PQ-9, the area over the induction curve of chlorophyll fluorescence owing to actinic cw light increases linearly with the PQ-9/PS II ratio in the reconstitution assay medium; (b) the difference of the maximum fluorescence levels, Fmax, of the induction curves, measured in the absence and presence of DCMU, is much more pronounced in PS II membrane fragments than in thylakoids; (c) the ratio Fmax(-DCMU)/Fmax(+DCMU) increases linearly with the content of oxidized PQ-9 that is varied in the thylakoids by reoxidation of the pool after preillumination and in PS II membrane fragments by the PQ-9/PS II ratio in the reconstitution assay; (d) the reconstitution procedure leads to tight binding of PQ-9 to PS II membrane fragments, and PQ-9 cannot be replaced by other quinones; (e) the fluorescence quenching by oxidized PQ-9 persists at low temperatures, and (f) oxidized PQ-9 preferentially affects the F695 of the fluorescence emission spectrum at 77 K. Based on the results of this study the oxidized PQ-9 is inferred to act as a non-photochemical quencher via a static mechanism. Possible implications for the nature of the quenching complex are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amesz J and Fork DC (1967) Quenching of chlorophyll fluorescence by quinones in algae and higher plants. Biochim Biophys Acta 143: 97–107

    Article  PubMed  CAS  Google Scholar 

  • Barr R and Crane FL (1971) Quinones in algae and higher plants. Meth Enzymol 23: 372–408

    Article  CAS  Google Scholar 

  • Bernhardt K and Trissl H-W (1999) Theories of kinetics and yields of fluorescence and photochemistry: How, if at all, can different models of antenna organization be distinguished experimentally? Biochim Biophys Acta 1409: 125–142

    Article  PubMed  CAS  Google Scholar 

  • Berthold DA, Babcock GT and Yocum CF (1981) A highly resolved, oxygen-evolving Photosystem II preparation from spinach thylakoid membranes. FEBS Lett 134: 231–234

    Article  CAS  Google Scholar 

  • Bittner T, Irrgang K-D, Renger G and Wasielewski MR (1994) Ultrafast excitation energy transfer and exciton-exciton annihilation processes in isolated light harvesting complexes of Photosystem II in green plants. J Phys Chem 98: 11821–11826

    Article  CAS  Google Scholar 

  • Bricker TM, Metz JG, Miles D and Sherman LA (1983) Biochemical characterization of a highly active O2-evolving Photosystem II preparation from maize. Biochim Biophys Acta 724: 447–455

    Article  CAS  Google Scholar 

  • Butler WL (1972) On the primary nature of fluorescence yield changes associated with photosynthesis. Proc. Natl. Acad. Sci. USA 69: 4697–4701

    Google Scholar 

  • Christen G, Seeliger A and Renger G (1999) P680 reduction kinetics and redox transition probability of the water oxidising complex as a function of pH and H/D isotope exchange in spinach thylakoids. Biochemistry 38: 6082–6092

    Article  PubMed  CAS  Google Scholar 

  • Crofts AR and Wraight CA (1983) The electrochemical domain of photosynthesis. Biochim Biophys Acta 726: 149–185

    CAS  Google Scholar 

  • Delosme R (1967) Étude de l'induction de fluorescence des algues vertes et des chloroplastes au début d'une illumination intense. Biochim Biophys Acta 143: 108–128 [in French]

    Article  PubMed  CAS  Google Scholar 

  • Delosme R (1972) New results about chlorophyll fluorescence ‘in vivo’. In: Forti G, AvronMand Melandri A (eds) Photosynthesis: Two Centuries after its Discovery by Joseph Priestley, Vol I, pp 187–195, Dr W. Junk, The Hague

    Google Scholar 

  • Duysens LMN and Sweers HE (1963) Mechanism of two photochemical reactions in algae as studied by means of fluorescence. In: Japan Soc Plant Physiol (ed) Studies on Microalgae and Photosynthetic Bacteria, pp 353–372. University of Tokyo Press, Tokyo

    Google Scholar 

  • Golbeck JH and Kok B (1979) Redox titration of electron acceptor Q and the plastoquinone pool in Photosystem II. Biochim Biophys Acta 547: 347–360

    Article  PubMed  CAS  Google Scholar 

  • Govindjee (1995) Sixty-three years since Kautsky: Chlorophyll a fluorescence. Austr. J Plant Physiol. 22: 131–160

    Article  CAS  Google Scholar 

  • Horton P, Ruban AV and Walters RG (1996) Regulation of light harvesting in green plants. Ann Rev Plant Physiol Plant Mol Biol 47: 655–684

    Article  CAS  Google Scholar 

  • Irrgang K-D (1999) Architecture of the thylakoid membrane. In: Singhal GS, Renger G, Govindjee, Irrgang K-D and Sopory SK (eds) Concepts in Photobiology: Photosynthesis and Photomorophogenesis, pp 139–180.Narosa, New Delhi

    Google Scholar 

  • Joliot P and Joliot A (1972) Studies on the quenching properties of the Photosystem II electron acceptor. In: Forti G, Avron M and Melandri A (eds) Photosynthesis: Two Centuries after its Discovery by Joseph Priestley, Vol I, pp 26–38. Dr W Junk, The Hague

    Google Scholar 

  • Klimov VV, Klevanik AV, Shuvalov VA and Krasnovsky AA (1977) Reduction of pheophytin in the primary light reaction of Photosystem II. FEBS Lett 83: 183–186

    Article  Google Scholar 

  • Kurreck J, Seeliger AG, Reifarth F, Karge M, and Renger G (1995) Reconstitution of the Endogenous Plastoquinone Pool in Photosystem II (PS II) Membrane Fragments, Inside-Out-Vesicles, and PS II Core Complexes from Spinach. Biochemistry 34: 15721–15731

    Article  PubMed  CAS  Google Scholar 

  • Kurreck J and Renger G (1998) Investigation of the plastoquinone pool size and fluorescence quenching in Photosystem II (PS II) membrane fragments. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, Vol II, pp 1157–1160. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Lam E, Baltimore B, Oritz W, Choller S, Melis A and Malkin R (1983) Characterization of a resolved oxygen-evolving Photosystem II preparation from spinach thylakoids. Biochim Biophys 724: 201–211

    CAS  Google Scholar 

  • Lavergne J and Briantais J-M (1996) Photosystem II Heterogeneity. In: Ort DR and Yocum CF (eds) Photosynthesis: The Light Reactions, pp 265–287. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Lavorel J and Etienne A-L (1977) In vivo chlorophyll fluorescence. In: Barber J (ed) Primary Processes of Photosynthesis, Topics in Photosynthesis, Vol 2, pp 203–268. Elsevier, Amsterdam

    Google Scholar 

  • Lavorel J, Breton J and Lutz M (1986) Methodological principles of measurement of light emitted by photosynthetic systems. In: Govindjee, Amesz J and Fork DC (eds) Light Emission by Plants and Bacteria, pp 57–98. Academic Press, New York

    Google Scholar 

  • MacMillan F, Lendzian F, Renger G and Lubitz W (1995) EPR and ENDOR investigation of the primary electron acceptor radical anion QY ¯·A in iron-depleted Photosystem II membrane fragments. Biochemistry 34: 8144–8156

    Article  PubMed  CAS  Google Scholar 

  • Murata N, Higashi SI and Fujimura Y (1990) Glycerolipids in various preparations of Photosystem II from spinach chloroplasts. Biochim Biophys Acta 1019: 261–268

    Article  CAS  Google Scholar 

  • Nakatani HY (1983) Correlation of low temperature 695 nm fluorescence emission with the reaction center of PS II (CP47). In: Inoue Y, Crofts AR, Govindjee, Murata N, Renger G and Satoh K (eds) The Oxygen Evolving System of Photosynthesis, pp 49–54. Academic Press, Tokyo

    Google Scholar 

  • Neubauer C and Schreiber U (1987) The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination. I. Saturation characteristics and partial control by the Photosystem II acceptor side. Z. Naturforsch 42: 1246–1254

    CAS  Google Scholar 

  • Okayama S and Butler WL (1972) Extraction and reconstitution of Photosystem II. Plant Physiol. 49: 769–774.

    PubMed  CAS  Google Scholar 

  • Reifarth F, Christen G and Renger G (1997) Fluorometric equipment for monitoring P680 reduction in PS II preparations and green leaves. Photosynth. Res. 51: 231–242

    Article  CAS  Google Scholar 

  • Reifarth F and Renger G (1998) Indirect evidence for structural changes coupled with QY ¯·B formation in Photosystem II. FEBS Lett. 428: 123–126

    Article  PubMed  CAS  Google Scholar 

  • Renger G (1979) Studies about the mechanism of herbicidal interaction with Photosystem II in isolated chloroplasts. Z Naturforsch 34c: 1010–1014

    CAS  Google Scholar 

  • Renger G (1992) Energy transfer and trapping in Photosystem II. In: Barber J (ed) Topics in Photosynthesis, The Photosystems: Structure, Function and Molecular Biology, pp 45–99. Elsevier, Amsterdam

    Google Scholar 

  • Renger G (1999) Molecular mechanism of water oxidation. In: Singhal GS, Renger G, Govindjee, Irrgang K-D, Sopory SK (eds) Concepts in Photobiology: Photosynthesis and Photomorphogenesis, pp 292–329. Narosa, New Delhi

    Google Scholar 

  • Renger G and Kayed A (1987) Fluorescence decline as a function of redox potentials and actinic light intensity in spinach thylakoids. Biochim Biophys Acta 894: 261–269

    Article  CAS  Google Scholar 

  • Renger G and Schreiber U (1986) Practical applications of fluorometric methods to algae and higher plants. In: Govindjee, Fork, DC and Amesz J (eds) Light Emission by Plants and Bacteria, pp 587–619. Academic Press, New York

    Google Scholar 

  • Renger G, Erixon K, Döring G and Wolff Ch (1976) Studies on the nature of the inhibitory effect of trypsin on the photosynthetic electron transport of system II in spinach chloroplasts. Biochim Biophys Acta 440: 278–286

    Article  PubMed  Google Scholar 

  • Renger G, Koike H, Yuasa M and Inoue Y (1983) Studies on the mechanism of the fluorescence decline induced by strong actinic light in PS II-particles under different redox conditions. FEBS Lett. 163: 89–93

    Article  CAS  Google Scholar 

  • Renger G, Eckert H-J, Bergmann A, Bernarding J, Liu B, Napiwotzki A, Reifarth F and Eichler H-J (1995) Fluorescence and spectroscopic studies of exciton trapping and electron transfer in Photosystem II of higher plants. Aust. J Plant Physiol 22: 167–181

    Article  CAS  Google Scholar 

  • Robinson HH and Crofts AR (1983) Kinetics of the oxidationreduction of the Photosystem II quinone acceptor complex and the pathway for deactivation. FEBS Lett 153: 221–226

    Article  CAS  Google Scholar 

  • Roelofs TA, Lee C-H and Holzwarth AR (1992) Global target analysis of picosecond chlorophyll fluorescence kinetics from pea chloroplasts. Biophys J 61: 1147–1163

    Article  CAS  PubMed  Google Scholar 

  • Samson G and Bruce D (1996) Origins of the low yield of chlorophyll a fluorescence induced by single turnover flash in spinach thylakoids. Biochim Biophys Acta 1276: 147–153

    Article  Google Scholar 

  • Satoh K (1972) Effects of urea and o-phenanthroline on F-695 emission in chloroplasts. Plant Cell Physiol 13: 23–34

    CAS  Google Scholar 

  • Satoh K, Katoh S, Dostatni R and Oettmeier W (1986) Herbicides and plastoquinone-binding proteins of Photosystem II reaction center complexes from the thermophilic cyanobacterium, Synechococcus sp. Biochim Biophys Acta 851: 202–208

    Article  CAS  Google Scholar 

  • Sauer K and Debreczeny M (1996) Fluorescence. In: Amesz J and Hoff AJ (eds) Biophysical Techniques in Photosynthesis, pp 41–61. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Schatz G, Brock H, Holzwarth AR (1988) A kinetic and energetic model for the primary processes in Photosystem II. Biophys J 54: 397–405

    CAS  PubMed  Google Scholar 

  • Schödel R, Irrgang K-D, Voigt J and Renger G (1999) Quenching of chlorophyll fluorescence by triplets in solubilised Light Harvesting Complex II (LHCII). Biophys J 76: 2238–2248

    PubMed  Google Scholar 

  • Schreiber U and Krieger A (1996) Two fundamentally different types of variable fluorescence in vivo. FEBS Lett 397: 131–135

    Article  PubMed  CAS  Google Scholar 

  • Schweitzer RH, Melkozernov AN, Blankenship RE and Brudvig GW (1998) Time-resolved fluorescence measurements of photosystem II: The effect of quenching by oxidized chlorophyllZ. J Phys Chem B 102: 8320–8326

    Article  CAS  Google Scholar 

  • Siggel U, Renger G, Stiehl HH and Rumberg, B (1972) Evidence for electronic and ionic interaction between electron transport chains in chloroplasts. Biochim Biophys Acta 256: 328–335

    Article  PubMed  CAS  Google Scholar 

  • Thielen APGM and van Gorkom HJ (1981) Redox potentials of electron acceptors in Photosystem IIα and IIβ. FEBS Lett 129: 205–209

    Article  CAS  Google Scholar 

  • van Gorkom HJ (1986) Fluorescence measurements in the study of Photosystem II electron transport. In: Govindjee, Amesz J and Fork DC (eds) Light Emission by Plants and Bacteria, pp 267–289. Academic Press, New York

    Google Scholar 

  • van Gorkom HJ, Tamminga JJ and Haveman J (1974) Primary reactions, plastoquinone and fluorescence yield in subchloroplast fragments prepared with deoxycholate. Biochim Biophys Acta 347: 417–438.

    Article  PubMed  CAS  Google Scholar 

  • van Grondelle R, Dekker JP, Gillbro T and Sundström V (1994) Energy transfer and trapping in photosynthesis. Biochim Biophys Acta 1187: 1–65

    Article  Google Scholar 

  • Vermaas WFG, Styring S, Schröder WP and Andersson B (1993) Photosynthetic water oxidation: the protein framework. Photosynth Res 38: 249–263

    Article  CAS  Google Scholar 

  • Vernotte C, Etienne A-L and Briantais J-M (1979) Quenching of the system II chlorophyll fluorescence by the plastoquinone pool. Biochim Biophys Acta 545: 519–527

    Article  PubMed  CAS  Google Scholar 

  • Völker M, Ono T, Inoue Y and Renger, G (1985) Effect of trypsin on PS-II particles. Correlation between Hill-activity, Mn-abundance and peptide pattern. Biochim Biophys Acta 806: 25–34

    Article  Google Scholar 

  • Winget GD, Izawa S and Good NE (1965) Stoichiometry of photophosphorylation. Biochem Biophys Res Comm 21: 438–443

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gernot Renger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurreck, J., Schödel, R. & Renger, G. Investigation of the plastoquinone pool size and fluorescence quenching in thylakoid membranes and Photosystem II (PS II) membrane fragments. Photosynthesis Research 63, 171–182 (2000). https://doi.org/10.1023/A:1006303510458

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006303510458

Navigation