Skip to main content
Log in

Phytochrome types in Picea and Pinus. Expression patterns of PHYA-related types

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Knowledge of the genes in gymnosperms encoding the apoproteins of the plant photoreceptor phytochrome is currently scanty as for gymnosperm nuclear protein coding sequences in general. Here we report two complete cDNA-derived sequences which code for two different types of gymnosperm phytochrome. One sequence stems from Norway spruce (Picea abies) and the other from Scots pine (Pinus sylvestris). More detailed studies have shown that both types of phytochrome gene are present in Norway spruce. From phylogenetic analyses, these types appear to branch off from progenitors that are also the common ancestors of the angiosperm PHYA/PHYC and PHYB/PHYD/PHYE lineages. Partial phytochrome sequences of other gymnosperms cluster with either the one type or the other of the gymnosperm phytochrome genes characterized here. Southern blot analysis of Picea DNA using probes derived from the full-length Picea gene indicated a family of at least five members. Whether they code for new types may be doubted since only two phylogenetic clusters were found. Studies using RNA-PCR of Picea RNA extracted from either light- or dark-grown seedlings indicated that the steady-state levels of the transcripts of two PHYA/C-related genes were hardly affected by light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aukerman, M.J., Hirschfeld, M., Wester, L., Weaver, M., Clack, T., Amasino, R.M. and Sharrock, R.A. 1997. A deletion in the PHYD gene of the arabidopsis Wassilewskija ecotype defines a role for phytochrome D in red/far-red light sensing. Plant Cell 9: 1317-1326.

    PubMed  Google Scholar 

  • Casal, J.J., Sanchez, R.A. and Botto J.F. 1998. Modes of action of phytochromes. J. Exp. Bot. 49: 127-138.

    Google Scholar 

  • Chang, S., Puryear, J. and Cairney, J. 1993. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep. 11: 113-116.

    Google Scholar 

  • Childs, K.L., Miller, F.R., Cordonier-Pratt, M.M., Pratt, L.H., Morgan, P.W. and Mullet, J.E. 1997. The sorghum photoperiod sensitivity gene, Ma3, encodes a phytochrome B. Plant Physiol. 113: 611-619.

    PubMed  Google Scholar 

  • Clack, T., Mathews, S. and Sharrock, R.A. 1994. The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequences and expression of PHYD and PHYE. Plant Mol. Biol. 25: 413-427.

    PubMed  Google Scholar 

  • Clapham, D.H., Dormling, I., Ekberg, I., Eriksson, G., Qamaruddin, M. and Vince-Prue, D. 1998a. Latitudinal cline of requirement for far-red light for the photoperiodic control of budset and extension growth in Picea abies (Norway spruce). Physiol. Plant. 102: 71-78.

    Google Scholar 

  • Clapham, D., Ekberg, I., Dormling, I., Eriksson, G., Qamaruddin, M. and Vince-Prue, D. 1998b. Dormancy: night timekeeping and day timekeeping for the photoperiodic control of budset in Norway spruce. In: P.J. Lumsden and A.J. Millar (Eds.) Biological Rhythms and Photoperiodism in Plant, Bios Scientific Publishers, Oxford, UK.

    Google Scholar 

  • Clapham, D.H., Newton, R.J., Sen, S. and von Arnold, S. In press. Transformation of Picea species. In: S.M. Jain and S.C. Minocha (eds.), Molecular Biology of Woody Plants. Kluwer Academic Publishers, Dordrecht, Netherlands.

  • D'Aoust, A.L. and Hubac, C. 1986. Phytochrome action and frost hardening in black spruce seedlings. Physiol. Plant. 67: 141-144.

    Google Scholar 

  • Dehesh, K., Tepperman, J., Christensen, A.H. and Quail, P.H. 1991. phyB is evolutionarily conserved and constitutively expressed in rice seedling shoots. Mol. Gen. Genet. 225: 305-313.

    PubMed  Google Scholar 

  • Dormling, I. 1993. Bud dormancy, frost hardiness, and frost drought in seedlings of Pinus sylvestris and Picea abies. In: P.H. Li and L. Christersson (Eds.), Advances in Plant Cold Hardiness. CRC Press, Boca Raton, FL, pp. 285-298.

    Google Scholar 

  • Elmlinger, M.W., Bolle, C., Batschauer, A., Oelmüller, R. and Mohr, H. 1994. Coaction of blue light and light absorbed by phytochrome in control of glutamine synthetase gene expression in Scots pine (Pinus sylvestris L.) seedlings. Planta 192: 189-194.

    PubMed  Google Scholar 

  • Fernbach, E. and Mohr, H. 1990. Coaction of blue/ultraviolet-A light and light absorbed by phytochrome in controlling growth of pine (Pinus sylvestris L.) seedlings. Planta 180: 212-216.

    Google Scholar 

  • Frohman, M.A., Dush, M.K. and Martin, G.R. 1988. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc. Natl. Acad. Sci. USA 85: 8998-9002.

    PubMed  Google Scholar 

  • Furuya, M. 1993. Phytochromes: their molecular species, gene families, and functions. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44: 617-645.

    Google Scholar 

  • Halliday, K.J., Thomas, B. and Whitelam, G.C. 1997. Expression of heterologous phytochromes A, B or C in transgenic tobacco plants alters vegetative development and flowering time. Plant J. 12: 1079-1090.

    PubMed  Google Scholar 

  • Hauser, B.A., Pratt, L.H. and Cordonnier-Pratt, M.M. 1997. Absolute quantification of five phytochrome transcripts in seedlings and mature plants of tomato (Solanum lycopersicum L.). Planta 201: 379-387.

    PubMed  Google Scholar 

  • Howe, G.T., Bucciaglia, P.A., Hackett, W.P., Furnier, G.R., Cordonnier-Pratt, M.-M. and Gardner, G. 1998. Evidence that the phytochrome gene family in black cottonwood has one PHYA locus and two PHYB loci but lacks members of the PHYC/F and PHYE subfamilies. Mol. Biol. Evol. 15: 160-175.

    PubMed  Google Scholar 

  • Jackson, S. and Thomas, B. 1997. Photoreceptors and signals in the photoperiodic control of development. Plant Cell Environ. 20: 790-795.

    Google Scholar 

  • Kolukisaoglu, H.Ñ., Marx, S., Wiegmann, C., Hanelt, S. and Schneider-Poetsch, H.A.W. 1995. Divergence of the phytochrome gene family predates angiosperm evolution and suggests that Selaginella and Equisetum arose prior to Psilotum. J. Mol. Evol. 41: 329-337.

    PubMed  Google Scholar 

  • Kvarnheden, A., Tandre, K. and Engström, P. 1995. A cdc2 homologue and closely related processed retropseudogenes from Norway spruce. Plant Mol. Biol. 27: 391-403.

    PubMed  Google Scholar 

  • Martin, W., Nock, S., Meyer-Gauen, G., Häger, K.-P., Jensen, U. and Cerff, R. 1993. A method for isolation of cDNAquality mRNA from immature seeds of a gymnosperm rich in polyphenolics. Plant Mol. Biol. 22: 555-556.

    PubMed  Google Scholar 

  • Mathews, S. and Sharrock, R.A. 1997. Phytochrome gene diversity. Plant Cell Environ. 20: 666-671.

    Google Scholar 

  • Mathews, S., Lavin, M. and Sharrock, R.A. 1995. Evolution of the phytochrome gene family and its utility for phylogenetic analyses of angiosperms. Ann. Miss. Bot. Gard. 82: 296-321.

    Google Scholar 

  • Mo, L.H., von Arnold, S. and Lagercrantz, U. 1989. Morphogenic and genetic stability in longterm embryogenic cultures and somatic embryos of Norway spruce (Picea abies L. Karst). Plant Cell Rep. 8: 375-378.

    Google Scholar 

  • Morand, L.Z., Kidd, D.G. and Lagarias, J.C. 1993. Phytochrome levels in the green alga Mesotaenium caldariorum are light regulated. Plant Physiol 101: 97-103.

  • Quail, P.H. 1994. Phytochrome genes and their expression. In: R.E., Kendrick and G.H.M. Kronenberg (Eds.), Photomorphogenesis in Plants, 2nd ed. Kluwer Academic Publishers, Dordrecht, Netherlands, ISBN 0-7923-2551-6, pp. 71-104.

    Google Scholar 

  • Quail, P.H., Boylan, M.T., Parks, B.M., Short, T.W., Xu, Y. and Wagner, D. 1995. Phytochromes: photosensory perception and signal transduction. Science 268: 675-680.

    PubMed  Google Scholar 

  • Qin, M., Kuhn, R., Moran, S. and Quail, P.H. 1997. Overexpressed phytochrome C has similar photosensory specificity to phytochrome B but a distinctive capacity to enhance primary leaf expansion. Plant J. 12: 1163-1172.

    PubMed  Google Scholar 

  • Rogers, S.O. and Bendich, A.J. 1988. Extraction of DNA from plant tissues. In: S.B. Gelvin, R.A. Schilperoort and D.P.S. Verma (eds.), Plant Molecular Biology Manual, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. A6: 1-10.

    Google Scholar 

  • Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Schneider-Poetsch, H.A.W., Kolukisaoglu, Ñ., Clapham, D.H., Hughes, J. and Lamparter, T. 1998. Non-angiosperm phytochromes and the evolution of vascular plants. Physiol. Plant. 102: 612-622.

    Google Scholar 

  • Sharrock, R.A. and Quail, P.H. 1989. Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes Dev. 3: 1745-1757.

    PubMed  Google Scholar 

  • Smith, H. 1995. Physiological and ecological function within the phytochrome family. Annu Rev. Plant Physiol. Plant Mol. Biol. 46: 289-315.

    Google Scholar 

  • Smith, H. and Whitelam, G.C. 1997. The shade avoidance syndrome: multiple responses mediated by multiple phytochromes. Plant Cell Environ. 20: 840-844.

    Google Scholar 

  • Smith, H., Xu, Y. and Quail, P.H. 1997. Antagonistic but complementary actions of phytochromes A and B allow optimum seedling de-etiolation. Plant Physiol. 114: 637-641.

    PubMed  Google Scholar 

  • Thümmler, F. and Dittrich, P. 1995. Phytochrome represents a small gene family in Picea abies: six partial sequences (Accession Nos. U38363 to U38368) encoding at least three different phytochrome isotypes. Plant Physiol. 109: 1498.

    Google Scholar 

  • Thümmler, F., Dufner, M., Kreisl, P. and Dittrich, P. 1990. Molecular cloning of a novel phytochrome gene of the moss Ceratodon purpureus which contains a putative light-regulated protein kinase. Plant Mol. Biol. 20: 1003-1017.

    Google Scholar 

  • Tomizawa, K.-I., Nagatani, A. and Furuya, M. 1990. Phytochrome genes: studies using the tools of molecular biology and photomorphogenetic mutants. Photochem. Photobiol. 52: 265-275.

    PubMed  Google Scholar 

  • Vince-Prue, D. 1984. Contrasting types of photoperiodic response in the control of dormancy. Plant Cell Environ. 7: 507-513.

    Google Scholar 

  • Whitelam, G.C. and Devlin, P.F. 1997. Roles of different phytochromes in Arabidopsis photomorphogenesis. Plant Cell Environ. 20: 752-758.

    Google Scholar 

  • Winands, A., Wagner, G., Marx, S. and Schneider-Poetsch, H.A.W. 1992. Partial nucleotide sequence of phytochrome from the Zygnematophycean green alga Mougeotia. Photochem. Photobiol. 56: 765-770.

    PubMed  Google Scholar 

  • Young, E. and Hanover, J.W. 1977. Effects of quality, intensity and duration of light breaks during a long night on dormancy in blue spruce (Picea pungens Engelm.) seedlings. Plant Physiol. 60: 271-273.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clapham, D.H., Kolukisaoglu, H.Ü., Larsson, CT. et al. Phytochrome types in Picea and Pinus. Expression patterns of PHYA-related types. Plant Mol Biol 40, 669–678 (1999). https://doi.org/10.1023/A:1006204318499

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006204318499

Navigation