Skip to main content
Log in

Epigenetic Mechanisms for Progression of Prostate Cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Epigenetic mechanisms may be the main driving force for critical changes in gene expression that are responsible for progression of prostate cancers. The three most extensively characterized mechanisms for epigenetic gene-regulation are (i) changing patterns of DNA methylation, (ii) histone acetylations/deacetylations, and (iii) alterations in regulatory feedback loops for growth factors. Several studies have indicated that DNA hypermethylation is an important mechanism in prostate cancer for inactivation of key regulatory genes such as E-cadherin, pi-class glutathione S-transferase, the tumor suppressors CDKN2 and PTEN, and IGF-II. Similarly, histone acetylations and deacetylations are frequently associated respectively with transcriptional activation (e.g. IGFBP-2 and p21) and repression (e.g. Mad:Max dimers) of genes linked to prostate cancer progression. Recently, histone acetyltransferase and deacetylase activities have been shown to be intrinsic with transcriptional coregulator proteins that bind to steroid receptors (e.g. SRC-1 and PCAF). Changes in regulatory feedback loops for growth factors with prostate cancer progression tend toward shifts from paracrine to autocrine control where the receptor and ligand are produced by the same cell. While there are several examples of this progression pattern in prostate tumors such as with IGF, FGF, TGF-α and their respective receptors, the precise mechanism (i.e. epigenetic or mutational) is less certain. In the context of treatment options, the contribution of mutational versus epigenetic events to prostate cancer progression is an improtant consideration. Irreversible genetic changes are likely to be less amenable to therapeutic control than are epigenetic ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Riggs AD, Martienssen RA, Russo VEA: Introduction. In: Epigenetic Mechanisms of Gene Regulation. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1996, pp 1-4

    Google Scholar 

  2. Mintz B, Illmensee K: Normal genetically mosaic mice produced from malignant teratoma cells. Proc Natl Acad Sci USA 72: 3585-3589, 1975

    PubMed  Google Scholar 

  3. Turker MS, Bestor TH: Formation of methylation patterns in the mammalian genome. Mutat Res 386: 119-130, 1997 Review

    PubMed  Google Scholar 

  4. Jost JP, Bruhat A: The formation of DNA methylation patterns and the silencing of genes. Prog Nucleic Acid Res Mol Biol 57: 217-248, 1997 Review

    PubMed  Google Scholar 

  5. Szyf M: DNA methylation patterns: An additional level of information? Biochem Cell Biol 69: 764-767, 1991

    PubMed  Google Scholar 

  6. Nan X, Campoy FJ, Bird A: MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 88: 471-481, 1997

    Article  PubMed  Google Scholar 

  7. Riggs AD, Porter TN: X-chromosome inactivation and epigenetic mechanisms. In: Riggs AD, Martienssen RA, Russo VEA (eds) Epigenetic Mechanisms of Gene Regulation. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1996, pp 231-248

    Google Scholar 

  8. Schulz WA: DNA methylation in urological malignancies (review). Int J Oncol 13: 151-167, 1998 Review

    PubMed  Google Scholar 

  9. Gama-Sosa MA, Slagel VA, Trewyn RW, Oxenhandler R, Kuo KC, Gehrke CW, Ehrlich M: The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res 11: 6883-6894, 1983

    PubMed  Google Scholar 

  10. Bedford MT, van Helden PD: Hypomethylation of DNA in pathological conditions of the human prostate. Cancer Res 47: 5274-5276, 1987

    PubMed  Google Scholar 

  11. Sakai T, Toguchida J, Ohtani N, Yandell DW, Rapaport JM, Dryja TP: Allele-specific hypermethylation of the retinoblastoma tumor-suppressor gene. Am J Hum Genet 48: 880-888, 1991

    PubMed  Google Scholar 

  12. Herman JG, Latif F, Weng Y, Lerman MI, Zbar B, Liu S, Samid D, Duan DS, Gnarra JR, Linehan WM, Baylin SB: Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci USA 91: 9700-9704, 1994

    PubMed  Google Scholar 

  13. Graff JR, Herman JG, Lapidus RG, Chopra H, Xu R, Jarrard DF, Isaacs WB, Pitha PM, Davidson NE, Baylin SB: E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res 55: 5195-5199, 1995

    PubMed  Google Scholar 

  14. Reik W, Surani MA: Cancer genetics. Genomic imprinting and embryonal tumours. Nature 338: 112-113, 1989

    Article  PubMed  Google Scholar 

  15. Rainier S, Johnson LA, Dobry CJ, Ping AJ, Grundy PE, Feinberg AP: Relaxation of imprinted genes in human cancer. Nature 362: 747-749, 1993

    Article  PubMed  Google Scholar 

  16. Jarrard DF, Bova GS, Isaacs WB: DNA methylation, molecular genetic, and linkage studies in prostate cancer. Prostate 6: 36-44, 1996 Review

    Google Scholar 

  17. Paul R, Ewing CM, Jarrard DF, Isaacs WB: The cadherin cell-cell adhesion pathway in prostate cancer progression. Br J Urol 79(Suppl 1): 37-43, 1997 Review

    PubMed  Google Scholar 

  18. Jarrard DF, Paul R, van Bokhoven A, Nguyen SH, Bova GS, Wheelock MJ, Johnson KR, Schalken J, Bussemakers M, Isaacs WB: P-cadherin is a basal cell-specific epithelial marker that is not expressed in prostate cancer. Clin Cancer Res 3: 2121-2128, 1997

    PubMed  Google Scholar 

  19. Lee WH, Morton RA, Epstein JI, Brooks JD, Campbell PA, Bova GS, Hsieh WS, Isaacs WB, Nelson WG: Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc Natl Acad Sci USA 91: 11733-11737, 1994

    PubMed  Google Scholar 

  20. Brooks JD, Weinstein M, Lin X, Sun Y, Pin SS, Bova GS, Epstein JI, Isaacs WB, Nelson WG: CG island methylation changes near the GSTP1 gene in prostatic intraepithelial neoplasia. Canc Epidemiol Biomark Prev 7: 531-536, 1998

    Google Scholar 

  21. Nelson JB, Lee WH, Nguyen SH, Jarrard DF, Brooks JD, Magnuson SR, Opgenorth TJ, Nelson WG, Bova GS: Methylation of the 5' CpG island of the endothelin B receptor gene is common in human prostate cancer. Cancer Res 57: 35-37, 1997

    PubMed  Google Scholar 

  22. Jarrard DF, Bova GS, Ewing CM, Pin SS, Nguyen SH, Baylin SB, Cairns P, Sidransky D, Herman JG, Isaacs WB: Deletional, mutational, and methylation analyses of CDKN2 (p16/MTS1) in primary and metastatic prostate cancer. Gen Chrom Canc 19: 90-96, 1997

    Google Scholar 

  23. Lu S, Tsai SY, Tsai MJ: Regulation of androgen-dependent prostatic cancer cell growth: Androgen regulation of CDK2, CDK4, and CKI p16 genes. Cancer Res 57: 4511-4516, 1997

    PubMed  Google Scholar 

  24. Gu K, Mes-Masson AM, Gauthier J, Saad F: Analysis of the p16 tumor suppressor gene in early-stage prostate cancer. Mol Carcinog 21: 164-170, 1998

    Article  PubMed  Google Scholar 

  25. Park DJ, Wilczynski SP, Pham EY, Miller CW, Koeffler HP: Molecular analysis of the INK4 family of genes in prostate carcinomas. J Urol 157: 1995-1999, 1997

    Article  PubMed  Google Scholar 

  26. Whang YE, Wu X, Suzuki H, Reiter RE, Tran C, Vessella RL, Said JW, Isaacs WB, Sawyers CL: Inactivation of the tumor suppressor PTEN/MMAC1 in advanced human prostate cancer through loss of expression. Proc Natl Acad Sci USA 95: 5246-5250, 1998

    Article  PubMed  Google Scholar 

  27. Jarrard DF, Bussemakers MJG, Bova GS, Isaacs WB: Regional loss of imprinting of the insulin-like growth factor II gene occurs in human prostate tissues. Clin Cancer Res 1: 1471-1478, 1995

    PubMed  Google Scholar 

  28. Morton RA Jr, Watkins JJ, Bova GS, Wales MM, Baylin SB, Isaacs WB: Hypermethylation of chromosome 17P locus D17S5 in human prostate tissue. J Urol 156(2 Pt 1): 512-516, 1996

    Article  PubMed  Google Scholar 

  29. Loidl P: Histone acetylation: Facts and questions. Chromosoma 103: 441-449, 1994 Review

    Article  PubMed  Google Scholar 

  30. Turner BM: Histone acetylation as an epigenetic determinant of long-term transcriptional competence. Cell Mol Life Sci 54: 21-31, 1998 Review

    Article  PubMed  Google Scholar 

  31. Holth LT, Chadee DN, Spencer VA, Samuel SK, Safneck JR, Davie JR: Chromatin, nuclear matrix and the cytoskeleton: Role of cell structure in neoplastic transformation. Int J Oncol 13: 827-837, 1998

    PubMed  Google Scholar 

  32. Thrasher JB, Tennant MK, Twomey PA, Hansberry KL, Wettlaufer JN, Plymate SR: Immunohistochemical localization of insulin-like growth factor binding proteins 2 and 3 in prostate tissue: Clinical correlations. J Urol 155: 999-1003, 1996

    Article  PubMed  Google Scholar 

  33. Figueroa JA, De Raad S, Tadlock L, Speights VO, Rinehart JJ: Differential expression of insulin-like growth factor binding proteins in high versus low Gleason score prostate cancer. J Urol 159: 1379-1383, 1998

    Article  PubMed  Google Scholar 

  34. Ho PJ, Baxter RC: Insulin-like growth factor-binding protein-2 in patients with prostate carcinoma and benign prostatic hyperplasia. Clin Endocrinol (Oxf) 46: 333-342, 1997

    Article  Google Scholar 

  35. Nishimura A, Fujimoto M, Oguchi S, Fusunyan RD, MacDermott RP, Sanderson IR: Short-chain fatty acids regulate IGF-binding protein secretion by intestinal epithelial cells. Am J Physiol 275(1 Pt 1): E55-63, 1998

    PubMed  Google Scholar 

  36. Rohlff C, Blagoskionny MV, Kyle E, Kesari A, Kim IY, Zelner DJ, Hakim F, Trepel J, Bergan RC: Prostate cancer cell growth inhibition by tamoxifen is associated with inhibition of protein kinase C and induction of p21(waf1/cip1). Prostate 37: 51-59, 1998

    Article  PubMed  Google Scholar 

  37. Sowa Y, Orita T, Minamikawa S, Nakano K, Mizuno T, Nomura H, Sakai T: Histone deacetylase inhibitor activates the WAF1/Cip1 gene promoter through the Sp1 sites. Biochem Biophys Res Commun 241: 142-150, 1997

    Article  PubMed  Google Scholar 

  38. Nakano K, Mizuno T, Sowa Y, Orita T, Yoshino T, Okuyama Y, Fujita T, Ohtani-Fujita N, Matsukawa Y, Tokino T, Yamagishi H, Oka T, Nomura H, Sakai T: Butyrate activates the WAF1/Cip1 gene promoter through Sp1 sites in a p53-negative human colon cancer cell line. J Biol Chem 272: 22199-22206, 1997

    Article  PubMed  Google Scholar 

  39. Kiermaier A, Eilers M: Transcriptional control: Calling in histone deacetylase. Curr Biol 7: R505-507, 1997 Review

    Article  PubMed  Google Scholar 

  40. Hassig CA, Fleischer TC, Billin AN, Schreiber SL, Ayer DE: Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 89: 341-347, 1997

    Article  PubMed  Google Scholar 

  41. Bernards R: Transcriptional regulation. Flipping the Myc switch. Curr Biol 5: 859-861, 1995 Review

    Article  PubMed  Google Scholar 

  42. Balaji KC, Koul H, Mitra S, Maramag C, Reddy P, Menon M, Malhotra RK, Laxmanan S: Antiproliferative effects of c-myc antisense oligonucleotide in prostate cancer cells: A novel therapy in prostate cancer. Urology 50: 1007-1015, 1997

    Article  PubMed  Google Scholar 

  43. Hassig CA, Schreiber SL: Nuclear histone acetylases and deacetylases and transcriptional regulation: HATs off to HDACs. Curr Opin Chem Biol 1: 300 -308, 1997 Review

    Article  PubMed  Google Scholar 

  44. Spencer TE, Jenster G, Burcin MM, Allis CD, Zhou J, Mizzen CA, McKenna NJ, Onate SA, Tsai SY, Tsai MJ, O'Malley BW: Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389: 194-198, 1997

    PubMed  Google Scholar 

  45. Xu J, Qiu Y, DeMayo FJ, Tsai SY, Tsai MJ, O'Malley BW: Partial hormone resistance in mice with disruption of the steroid receptor coactivator-1 (SRC-1) gene. Science 279: 1922-1925, 1998

    Article  PubMed  Google Scholar 

  46. Utley RT, Ikeda K, Grant PA, Cote J, Steger DJ, Eberharter A, John S, Workman JL: Transcriptional activators direct histone acetyltransferase complexes to nucleosomes. Nature 394: 498-502, 1998

    PubMed  Google Scholar 

  47. Aarnisalo P, Palvimo JJ, Janne OA: CREB-binding protein in androgen receptor-mediated signaling. Proc Natl Acad Sci USA 95: 2122-2127, 1998

    Article  PubMed  Google Scholar 

  48. Sato N, Sadar MD, Bruchovsky N, Saatcioglu F, Rennie PS, Sato S, Lange PH, Gleave ME: Androgenic induction of prostate-specific antigen gene is repressed by protein-protein interaction between the androgen receptor and AP-1/c-Jun in the human prostate cancer cell line LNCap. J Biol Chem 272: 17485-17494, 1997

    Article  PubMed  Google Scholar 

  49. Fronsdal K, Engedal N, Slagsvold T, Saatcioglu F: CREB binding protein is a coactivator for the androgen receptor and mediates cross-talk with AP-1. J Biol Chem 273: 31853-31859, 1998

    Article  PubMed  Google Scholar 

  50. Lambert PF, Kashanchi F, Radonovich MF, Shiekhattar R, Brady JN: Phosphorylation of p53 Serine 15 increases interaction with CBP. J Biol Chem 273: 33048-33053, 1998

    Article  PubMed  Google Scholar 

  51. Luo RX, Postigo AA, Dean DC: Rb interacts with histone deacetylase to repress transcription. Cell 92: 463-473, 1998

    Article  PubMed  Google Scholar 

  52. Yeh S, Miyamoto H, Nishimura K, Kang H, LudlowJ, Hsiao P, Wang C, Su C, Chang C: Retinoblastoma, a tumor suppressor, is a coactivator for the androgen receptor in human prostate cancer DU145 cells. Biochem Biophys Res Commun 248: 361-367, 1998

    Article  PubMed  Google Scholar 

  53. Knudsen KE, Arden KC, Cavenee WK: Multiple G1 regulatory elements control the androgen-dependent proliferation of prostatic carcinoma cells. J Biol Chem 273: 20213-20222, 1998

    Article  PubMed  Google Scholar 

  54. Hassig CA, Tong JK, Schreiber SL: Fiber-derived butyrate and the prevention of colon cancer. Chem Biol 4: 783-789, 1997 Review

    Article  PubMed  Google Scholar 

  55. Perrine GP, Dover GH, Daftari P, Walsh CT, Jin Y, Mays A, Faller D: Isobutyramide, an orally bioavailable butyrate analogue, stimulates fetal globin gene expression in vitroand in vivo. Br J Haemato 188: 555-561, 1994

    Google Scholar 

  56. Faller DV, Perrine SP: Butyrate in the treatment of sickle cell disease and beta-thalassemia. Curr Opin Hemato 12: 109-117, 1995 Review

    Google Scholar 

  57. Grunicke H, Csordas A, Helliger W, Hauptlorenz S, Loidl A, Multhaup I, Zwierzina H, Puschendorf B: Depression of histone acetylation by alkylating antitumor agents: Significance for antitumor activity and possible biological consequences. Adv Enzyme Regul 22: 433-446, 1984

    Article  PubMed  Google Scholar 

  58. Talasz H, Weiss G, Puschendorf B: Replication-linked histone acetylation in rat liver tissue is sensitive to alkylating agents. FEBS Lett 264: 141-144, 1990

    Article  PubMed  Google Scholar 

  59. Gleave ME, Sato N, Sadar M, Yago V, Bruchovsky N, Sullivan L: Butyrate analogue, isobutyramide, inhibits tumor growth and time to androgen-independent progression in the human prostate LNCaP tumor model. J Cell Biochem 69: 271-281, 1998

    PubMed  Google Scholar 

  60. Isaacs JT, Cussenot O, Jankevicius F, Klocker H, Kubota Y, Morgia G, Rennie P, Schmitz-Drager BJ: Growth regulation of normal and malignant prostatic cells. In: Proceedings of the First International Consultation on Prostate Cancer. Murphy G, Griffiths K, Denis L, Khoury S, Chatelain C, Cockett AT (eds). Scient Com Internat Ltd, 1996, pp 31-81

  61. Cohen DW, Simak R, Fair WR, Melamed J, Scher HI, Cordon-Cardo C: Expression of transforming growth factoralpha and the epidermal growth factor receptor in human prostate tissues. 3 Urol 152(6 Pt 1): 2120 -2124, 1994

    Google Scholar 

  62. Leav I, McNeal JE, Ziar J, Alroy J: The localization of transforming growth factor alpha and epidermal growth factor receptor in stromal and epithelial compartments of developing human prostate and hyperplastic, dysplastic, and carcinomatous lesions. Hum Pathol 29: 668- 675, 1998

    Article  PubMed  Google Scholar 

  63. Dalu A, Haskell JF, Coward L, Lamartiniere CA: Genistein, a component of soy, inhibits the expression of the EGF and ErbB2/Neu receptors in the rat dorsolateral prostate. Prostate 37: 36-43, 1998

    Article  PubMed  Google Scholar 

  64. Cohen P, Peehl DM, Rosenfeld RG: The IGF axis in the prostate. Horm Metab Res 26: 81-84, 1994 Review

    PubMed  Google Scholar 

  65. Kaicer EK, Blat C, Harel L: IGF-I and IGF-binding proteins: Stimulatory and inhibitory factors secreted by human prostatic adenocarcinoma cells. Growth Factors 4: 231-237, 1991

    PubMed  Google Scholar 

  66. Wang YZ, Wong YC: Sex hormone-induced prostatic carcinogenesis in the noble rat: The role of insulin-like growth factor-I (IGF-I) and vascular endothelial growth factor (VEGF) in the development of prostate cancer. Prostate 35: 165-177, 1998

    Article  PubMed  Google Scholar 

  67. Li SL, Goko H, Xu ZD, Kimura G, Sun Y, Kawachi MH, Wilson TG, Wilczynski S, Fujita-Yamaguchi Y: Expression of insulin-like growth factor (IGF)-II in human prostate, breast, bladder, and paraganglioma tumors. Cell Tissue Res 291: 469-479, 1998

    Article  PubMed  Google Scholar 

  68. Russell PJ, Bennett S, Stricker P: Growth factor involvement in progression of prostate cancer. Clin Chem 44: 705-723, 1998 Review

    PubMed  Google Scholar 

  69. Russell PJ, Brown J, Grimmond S, Stapleton P, Russell P, Raghavan D, Symonds G: Tumour-induced host stromalcell transformation: Induction of mouse spindle-cell fibrosarcoma not mediated by gene transfer. Int J Cancer 46: 299-309, 1990

    PubMed  Google Scholar 

  70. Pathak S, Nemeth MA, Multani AS, Thalmann GN, von Eschenbach AC, Chung LW: Can cancer cells transform normal host cells into malignant cells? Br J Cancer 76: 1134-1138, 1997

    PubMed  Google Scholar 

  71. Dong JT, Suzuki H, Pin SS, Bova GS, Schalken JA, Isaacs WB, Barrett JC, Isaacs JT: Down-regulation of the KAI1 metastasis suppressor gene during the progression of human prostatic cancer infrequently involves gene mutation or allelic loss. Cancer Res 56: 4387-4390, 1996

    PubMed  Google Scholar 

  72. Noble RL: Sex steroids as a cause of adenocarcinoma of the dorsal prostate in Nb rats, and their influence on the growth of transplants. Oncology 34: 138-141, 1977

    PubMed  Google Scholar 

  73. Noble RL: The development of prostatic adenocarcinoma in Nb rats following prolonged sex hormone administration. Cancer Res 37: 1929-1933, 1977

    PubMed  Google Scholar 

  74. Noble RL: Production of Nb rat carcinoma of the dorsal prostate and response of estrogen-dependent transplants to sex hormones and tamoxifen. Cancer Res 40: 3547-3550, 1980

    PubMed  Google Scholar 

  75. Pollard M: Dihydrotestosterone prevents spontaneous adenocarcinomas in the prostate-seminal vesicle in aging L-W rats. Prostate 36: 168-171, 1998

    Article  PubMed  Google Scholar 

  76. Bruchovsky N, Goldenberg SL, Gleave M, Rennie P, Akakura K, Sato N: Intermittent therapy for prostate cancer. Endocrine-Rel Canc 4: 153-177, 1997 Review

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rennie, P.S., Nelson, C.C. Epigenetic Mechanisms for Progression of Prostate Cancer. Cancer Metastasis Rev 17, 401–409 (1998). https://doi.org/10.1023/A:1006121219097

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006121219097

Navigation