Skip to main content
Log in

Multiscale Analysis for Interacting Particles: Relaxation Systems and Scalar Conservation Laws

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We investigate the derivation of semilinear relaxation systems and scalar conservation laws from a class of stochastic interacting particle systems. These systems are Markov jump processes set on a lattice, they satisfy detailed mass balance (but not detailed balance of momentum), and are equipped with multiple scalings. Using a combination of correlation function methods with compactness and convergence properties of semidiscrete relaxation schemes we prove that, at a mesoscopic scale, the interacting particle system gives rise to a semilinear hyperbolic system of relaxation type, while at a macroscopic scale it yields a scalar conservation law. Rates of convergence are obtained in both scalings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. A. De Masi and E. Presutti, Mathematical Methods for Hydrodynamic Limits, Lecture Notes in Mathematics 1501 (Springer-Verlag, New York, 1991).

    Google Scholar 

  2. M. A. Katsoulakis and A. E. Tzavaras, Contractive relaxation systems and the scalar multidimensional conservation law,Comm. Partial Differential Equations 22:195-233 (1997).

    Google Scholar 

  3. K. Uchyiama, On the Boltzmann-Grad limit for the Broadwell model of the Boltzmann equation, J. Stat. Phys. 52:331-355 (1988).

    Google Scholar 

  4. S. Caprino, A. De Masi, E. Presutti, and M. Pulvirenti, A stochastic particle system modeling the Carleman equation, J. Stat. Phys. 55:625-638 (1989).

    Google Scholar 

  5. S. Caprino, A. De Masi, E. Presutti, and M. Pulvirenti, A derivation of the Broadwell equation, Comm. Math. Phys. 135:443-465 (1991).

    Google Scholar 

  6. S. Caprino and M. Pulvirenti, The Boltzmann_Grad limit for a one-dimensional Boltzmann equation in a stationary state, Comm. Math. Phys. 177:63-81 (1996).

    Google Scholar 

  7. F. Rezakhanlou and J. Tarver, Boltzmann-Grad limit for a particle system in continuum, Ann. Inst. H. Poincaré Probab. Stat. 33:753-796 (1997).

    Google Scholar 

  8. T.-P. Liu, Hyperbolic conservation laws with relaxation, Comm. Math. Phys. 108:153-175 (1987).

    Google Scholar 

  9. G.-Q. Chen, C. D. Levermore, and T.-P. Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy, Comm. Pure Appl. Math. 47:789-830 (1994).

    Google Scholar 

  10. R. Natalini, Convergence to equilibrium for the relaxation approximations of conservation laws, Comm. Pure Appl. Math. 49:795-823 (1996).

    Google Scholar 

  11. R. Natalini, A discrete kinetic approximation of entropy solutions to multidimensional scalar conservation laws (1996), preprint.

  12. S. Jin and Z. Xin, The relaxing schemes for systems of conservation laws in arbitrary space dimensions, Comm. Pure Appl. Math. 48:235-277 (1995).

    Google Scholar 

  13. A. Tveito and R. Winther, On the rate of convergence to equilibrium for a system of conservation laws with a relaxation term, SIAM J. Math. Anal. 28:136-161 (1997).

    Google Scholar 

  14. M. A. Katsoulakis, G. Kossioris, and Ch. Makridakis, Convergence and error estimates of relaxation schemes for multidimensional conservation laws, Comm. Partial Differential Equations 24:395-424 (1999).

    Google Scholar 

  15. F. Rezakhanlou, Hydrodynamic limit for attractive particle systems in ℤd, Comm. Math. Phys. 140:417-448 (1991).

    Google Scholar 

  16. B. Perthame and M. Pulvirenti, On some large systems of random particles which approximate scalar conservation laws, Asymptotic Anal. 10:253-278 (1995).

    Google Scholar 

  17. L. Bonaventura, Interface dynamics in an interacting spin system, Nonlinear Anal. 25:799-819 (1995).

    Google Scholar 

  18. M. A. Katsoulakis and P. E. Souganidis, Interacting particle systems and generalized evolution of fronts, Arch. Rational Mech. Anal. 127:133-157 (1994).

    Google Scholar 

  19. P. L. Lions, B. Perthame, and E. Tadmor, A kinetic formulation of scalar mulltidimensional conservation laws, J. AMS 7:169-191 (1994).

    Google Scholar 

  20. O. E. Lanford, Time evolution of large classical systems, Lect. Notes in Phys. 38:1-111 (1975).

    Google Scholar 

  21. S. N. Kruzhkov, First order quasilinear equations with several independent variables, Math. USSR Sbornik 10:217-243 (1970).

    Google Scholar 

  22. N. N. Kuznetzov, Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation, USSR Comp. Math. and Math. Phys. 16:105-119 (1976).

    Google Scholar 

  23. F. Bouchut and B. Perthame, Kruzhkov's estimates for scalar conservation laws revisited, Transactions AMS (1998), to appear.

  24. M. A. Katsoulakis and A. E. Tzavaras, Contractive relaxation systems and interacting particles for scalar conservation laws, C. R. Acad. Sci. Paris, Sér. I Math. 323:865-870 (1996).

    Google Scholar 

  25. J. Doob, Stochastic Processes (Wiley, New York, 1953).

    Google Scholar 

  26. T. M. Liggett, Interacting Particle Systems (Springer-Verlag, New York, 1985).

    Google Scholar 

  27. W. Ruijgrok and T. T. Wu, A completely solvable model of the nonlinear Boltzmann equation, Physica A 113:401-416 (1982).

    Google Scholar 

  28. H. Spohn, Large Scale Dynamics of Interacting Particles (Springer, New York, 1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katsoulakis, M.A., Tzavaras, A.E. Multiscale Analysis for Interacting Particles: Relaxation Systems and Scalar Conservation Laws. Journal of Statistical Physics 96, 715–763 (1999). https://doi.org/10.1023/A:1004670308361

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004670308361

Navigation