Skip to main content
Log in

Transposable elements as the key to a 21st century view of evolution

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Cells are capable of sophisticated information processing. Cellular signal transduction networks serve to compute data from multiple inputs and make decisions about cellular behavior. Genomes are organized like integrated computer programs as systems of routines and subroutines, not as a collection of independent genetic 'units'. DNA sequences which do not code for protein structure determine the system architecture of the genome. Repetititve DNA elements serve as tags to mark and integrate different protein coding sequences into coordinately functioning groups, to build up systems for genome replication and distribution to daughter cells, and to organize chromatin. Genomes can be reorganized through the action of cellular systems for cutting, splicing and rearranging DNA molecules. Natural genetic engineering systems (including transposable elements) are capable of acting genome-wide and not just one site at a time. Transposable elements are subject to regulation by cellular signal transduction/computing networks. This regulation acts on both the timing and extent of DNA rearrangements and (in a few documented cases so far) on the location of changes in the genomes. By connecting transcriptional regulatory circuits to the action of natural genetic engineering systems, there is a plausible molecular basis for coordinated changes in the genome subject to biologically meaningful feedback.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal, A., Q.M. Eastman & D.G. Schatz, 1998. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature, 394: 744–751.

    Article  PubMed  CAS  Google Scholar 

  • Alberts, B., D. Bray, J. Lewis, M. Raff, K. Roberts & J.D. Watson, 1994. Molecular Biology of the Cell, 3rd edn., Garland, New York.

    Google Scholar 

  • Avery, O.T., C.M. MacLeod & M. McCarty, 1944. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a deoxyribonucleic acid fraction isolated from pneumococcus type III. J. Exp. Med. 79: 137–157.

    Article  CAS  PubMed  Google Scholar 

  • Behe, M., 1996. Darwin's Black Box: the biochemical challenge to evolution, Free Press, New York.

    Google Scholar 

  • Berg, D.E. & M.M. Howe, 1989. Mobile DNA. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Bestor, T.H., 1999. Sex brings transposons and genomes into conflict. Genetica 107: 289–295.

    Article  PubMed  CAS  Google Scholar 

  • Blackwell, T.K. & F.W. Alt, 1989. Mechanism and developmental program of immunoglobulin gene rearrangement in mammals. Ann. Rev. Genet. 23: 605–636.

    Article  PubMed  CAS  Google Scholar 

  • Bradshaw, V.A. & K. McEntee,1989. DNA damage activates transcription and transposition of yeast Ty retrotransposons. Mol. Gen. Genet. 218: 465–474.

    Article  PubMed  CAS  Google Scholar 

  • Bray, D., 1990. Intracellular signalling as a parallel distributed process. J. Theoret. Biol. 143: 215–231.

    CAS  Google Scholar 

  • Bregliano, J.-C. & M.G. Kidwell, 1983. Hybrid dysgenesis determinants, pp. 363–410 in Mobile Genetic Elements, edited by J.A. Shapiro, Academic Press, New York.

    Google Scholar 

  • Britten, R.J., 1997. Mobile elements inserted in the distant past have taken on important functions. Gene 205: 177–182.

    Article  PubMed  CAS  Google Scholar 

  • Britten, R. J. & E.H. Davidson, 1969. Gene regulation for higher cells: a theory, Science 165: 349–357.

    PubMed  CAS  Google Scholar 

  • Britten, R.J. & D.E. Kohne, 1968. Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms, Science 161: 529–540.

    PubMed  CAS  Google Scholar 

  • Brosius, J., 1999a. RNAs from all categories generate retrosequences that may be accepted as novel genes or regulatory elements. Gene 238: 115–134.

    Article  PubMed  CAS  Google Scholar 

  • Brosius, J., 1999b. Vertebrate genomes were forged by massive bombardments with retroelements and retrosequences. Genetica 107: 209–238

    Article  PubMed  CAS  Google Scholar 

  • Costa, A.P.P., K.C. Scortecci, R.Y. Hashimoto, P.G. Araujo, M.-A. Grandbastien & M.-A. Van Sluys, 1999. Retrolycl-1, a member of the Tnt1 retrotransposon super-family in the Lycopersicon peruvianum genome. Genetica 107: 65–72.

    Article  CAS  Google Scholar 

  • Echols, H., 1986. Multiple DNA-protein interactions governing high-precision DNA transactions. Science 233: 1050–1056.

    PubMed  CAS  Google Scholar 

  • Engels, W.R., 1989. P elements in Drosophila melanogaster, pp. 437–484 in Mobile DNA, edited by D.E. Berg. and M.M. Howe, American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Errede, B., T.S. Cardillo, G. Wever & F. Sherman, 1981. ROAM mutations causing increased expression of yeast genes: Their activation by signals directed toward conjugation functions and their formation by insertions of Ty1 repetitive elements. Cold Spr. Harb. Symp. Quant. Biol. 45: 593–607.

    CAS  Google Scholar 

  • Fauvarque, M.O. & J.M. Dura, 1993. Polyhomeotic regulatory sequences induce developmental regulator-dependent variegation and targeted P-element insertions in Drosophila. Genes Dev. 7: 1508–1520.

    PubMed  CAS  Google Scholar 

  • Felsenfeld, G., J. Boyes, J. Chung, D. Clark & V. Studitsky, 1996. Chromatin structure and gene expression. Proc. Natl. Acad. Sci. USA 93: 9384–9388.

    Article  PubMed  CAS  Google Scholar 

  • Finnegan, D.J., 1989. Eukaryotic transposable elements and genome evolution. Trends Genet. 5: 103–107.

    Article  PubMed  CAS  Google Scholar 

  • Foster P.L., 1993. Adaptive mutation: the uses of adversity. Ann. Rev. Microbiol. 47: 467–504.

    Article  CAS  Google Scholar 

  • Foster, P.L. & W.A. Rosche, 1999. Increased episomal replication accounts for the high rate of adaptive mutation in recD mutants of Escherichia coli. Genetics 152: 15–30.

    PubMed  CAS  Google Scholar 

  • Galitski, T. & J.R. Roth, 1995. Evidence that F plasmid transfer replication underlies apparent adaptive mutation. Science 268: 421–423.

    PubMed  CAS  Google Scholar 

  • Gerhart, J. & M. Kirschner, 1997. Cells, Embryos & Evolution: toward a cellular and developmental understanding of phenotypic variation and evolutionary adaptability. Blackwell Science, Malden, Mass.

    Google Scholar 

  • Green, M.M., 1988. Mobile DNA elements and spontaneous gene mutation, In Eukaryotic Transposable Elements as Mutagenic Agents, Banbury Report 30: 41–50.

    CAS  Google Scholar 

  • Hall, B.G., 1999. Transposable elements as activators of cryptic genes in E. coli. Genetica 107: 181–187.

    Article  PubMed  CAS  Google Scholar 

  • Hama C, Z. Ali & T.B. Kornberg, 1990. Region-specific recombination and expression are directed by portions of the Drosophila engrailed promoter. Genes Dev. 4: 1079–1093.

    PubMed  CAS  Google Scholar 

  • Hiom, K., M. Melek & M. Gellert, 1998. DNA transposition by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations. Cell 94: 463–470.

    Article  PubMed  CAS  Google Scholar 

  • Jacob, F. & J. Monod, 1961. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3: 318–356.

    Article  PubMed  CAS  Google Scholar 

  • Kassis, J.A., E. Noll, E.P. Vansickle, W.F. Odenwald & N. Perrimon, 1992. Altering the insertional specificity of a Drosophila transposable element. Proc. Natl. Acad. Sci. USA 89: 1919–1923.

    Article  PubMed  CAS  Google Scholar 

  • Kenter, A. & R. Wuerffel, 1999. Immunoglobulin switch recombination may occur by a DNA end-joining mechanism. Annal. N.Y. Acad. Sci. 870: 206–217.

    Article  CAS  Google Scholar 

  • Kidwell, M.G. & M.B. Evgen'ev, 1999. How valuable are model organisms for transposable element studies? Genetica 107: 103–111.

    Article  PubMed  CAS  Google Scholar 

  • Kinsey P.T.& S.B. Sandmeyer, 1995. Ty3 transposes in mating populations of yeast: a novel transposition assay for Ty3. Genetics 139: 81–94.

    PubMed  CAS  Google Scholar 

  • Kirchner, J., C.M. Connolly & S.B. Sandmeyer, 1995. Requirement of RNA polymerase III transcription factors for in vitro position-specific integration of a retrovirus like element. Science 267: 1488–1491.

    PubMed  CAS  Google Scholar 

  • Lamrani. S., C. Ranquet, M.-J. Gama, H. Nakai, J.A. Shapiro, A. Toussaint & G. Maenhaut-Michel, 1999. Starvation-induced Mucts62-mediated Coding Sequence Fusion: Roles for ClpXP, Lon, RpoS and Crp. Molec. Microbiol. 32, 327–343.

    Article  CAS  Google Scholar 

  • Lerat, E., F. Brunet, C. Bazin & P. Capy, 1999. Is the evolution of transposable elements modular? Genetica 107: 15–25.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, S.M., 1999. Evolution of immunoglobulin and T-cell receptor gene assembly. Annal. N.Y. Acad. Sci. 870: 58–67.

    Article  CAS  Google Scholar 

  • MacNab, R., 1992. Genetics and biogenesis of bacterial flagella. Annu. Rev. Genet. 26: 131–158.

    Article  PubMed  CAS  Google Scholar 

  • Maenhaut-Michel, G. & J.A. Shapiro, 1994. The roles of starvation and selective substrates in the emergence of araB-lacZ fusion clones. EMBO J. 13: 5229–5239.

    PubMed  CAS  Google Scholar 

  • Maenhaut-Michel, G., C.E. Blake, D.R.F. Leach & J.A. Shapiro, 1997. Different structures of selected and unselected araB-lacZ fusions. Molec. Micro. 23: 1133–1146.

    Article  CAS  Google Scholar 

  • Matzke, M.A., M.F. Mette, W. Aufsatz, J. Jakowitsch & A.J.M. Matzke, 1999. Host defenses to parasitic sequences and the evolution of epigenetic control mechanisms. Genetica 107: 271–287.

    Article  PubMed  CAS  Google Scholar 

  • Mazel, D, B. Dychinco, V.A. Webb & J. Davies, 1998. A distinctive class of integron in the Vibrio cholerae genome. Science 280: 605–608.

    Article  PubMed  CAS  Google Scholar 

  • McClintock, B., 1950. The origin and behavior of mutable loci in maize. Proc. Natl. Acad. Sci. USA 36: 344–355.

    Article  PubMed  CAS  Google Scholar 

  • McClintock, B., 1951. Chromosome organization and genic expression. Cold Spr. Harb. Symp. Quant. Biol. 16: 13–47.

    CAS  Google Scholar 

  • McClintock, B., 1953. Induction of instability at selected loci in maize. Genetics 38: 579–599.

    PubMed  CAS  Google Scholar 

  • McClintock, B., 1956a. Intranuclear systems controlling gene action and mutation. Brookhaven Symp. Biol. 8: 58–74.

    PubMed  Google Scholar 

  • McClintock, B., 1956b. Controlling elements and the gene. Cold Spr. Harb. Symp. Quant. Biol. 21: 197–216.

    CAS  Google Scholar 

  • McClintock, B., 1965. The control of gene action in maize. Brookhaven Symp. Biol. 18: 162–184.

    Google Scholar 

  • McClintock, B., 1978. Mechanisms that rapidly reorganize the genome. Stadler Genetics Symp. 10: 25–48.

    Google Scholar 

  • McClintock, B., 1984. Significance of responses of the genome to challenge. Science 226: 792–801.

    PubMed  CAS  Google Scholar 

  • Monod, J. & F. Jacob, 1961. Teleonomic mechanisms in cellular metabolism, growth and differentiation. Cold Spr. Harb. Symp. Quant. Biol. 26: 389–401.

    CAS  Google Scholar 

  • Moran, J.V., 1999. Human L1 retrotransposition: insights and peculiarities learned from a cultured cell retrotransposition assay. Genetica 107: 39–51.

    Article  PubMed  CAS  Google Scholar 

  • Pardue, M.-L. & P.G. DeBaryshe, 1999. Drosophila telomeres: two transposable elements with important roles in chromosomes. Genetica 107: 189–196.

    Article  PubMed  CAS  Google Scholar 

  • Peters, J.E. & S.A. Benson. 1995. Redundant transfer of F' plasmids occurs between Escherichia coli cells during nonlethal selection. J. Bacteriol. 177: 847–850.

    PubMed  CAS  Google Scholar 

  • Radicella, J.P., P.U. Park & M.S. Fox, 1995. Adaptive mutation in Escherichia coli: A role for conjugation. Science 268: 418–420.

    PubMed  CAS  Google Scholar 

  • Recchia, G.D. & R. Hall, 1995. Gene cassettes: a new class of mobile element. Microbiology 141: 3015–3027.

    Article  PubMed  CAS  Google Scholar 

  • Reznikoff, W.S., 1992. The lactose operon-controlling elements: a complex paradigm. Mol. Microbiol. 6: 2419–2422.

    Article  PubMed  CAS  Google Scholar 

  • Roy, A.M., M.L. Carroll, D.H. Kass, S.V. Nguyen, A.-H. Salem, M.A. Batzer & P.L. Deininger, 1999. Recently integrated human Alu repeats: finding needles in the haystack. Genetica 107: 149–161.

    Article  PubMed  CAS  Google Scholar 

  • Saier, M.H., Jr., T.M. Ramseier & J. Reizer, 1996. Regulation of carbon utilization, pp. 1325–1343 in Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edn., edited by F.C. Neidhardt et al., ASM Press, Washington, D.C.

    Google Scholar 

  • Shapiro, J.A. 1982, Changes in gene order and gene expression. Natl. Cancer Inst. Monograph 60: 87–110.

    CAS  Google Scholar 

  • Shapiro, J.A., 1983. Mobile Genetic Elements, Academic Press, New York.

    Google Scholar 

  • Shapiro, J.A., 1984. Observations on the formation of clones containing araB-lacZ cistron fusions. Molec. Gen. Genet. 194: 79–90.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, J.A., 1992. Natural genetic engineering in evolution. Genetica 86: 99–111.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, J.A., 1995, Adaptive mutation: Who's really in the garden? Science 268: 373–374.

    PubMed  CAS  Google Scholar 

  • Shapiro, J.A., 1997. Genome organization, natural genetic engineering and adaptive mutation. Trends Genet. 13: 98–104.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, J.A., 1999a. Natural genetic engineering, adaptive mutation and bacterial evolution, pp. 259–275, in Microbial Ecology and Infectious Disease, edited by E. Rosenberg, ASM Press, Washington.

    Google Scholar 

  • Shapiro, J.A., 1999b. Genome system architecture and natural genetic engineering in evolution. Annal. N.Y. Acad. Sci. 870: 23–35.

    Article  CAS  Google Scholar 

  • Shapiro, J.A. & D. Leach, 1990. Action of a transposable element in coding sequence fusions. Genetics 126: 293–299.

    PubMed  CAS  Google Scholar 

  • Taillebourg, E. & J.M. Dura, 1999. A novel mechanism for P element homing in Drosophila. Proc. Natl. Acad. Sci. USA 96: 6856–6861.

    Article  PubMed  CAS  Google Scholar 

  • Voytas, D.F. & J.D. Boeke, 1993. Yeast retrotransposons and tRNAs. Trends Genet. 9: 421–427.

    Article  PubMed  CAS  Google Scholar 

  • Watson, J.D. & F.H.C. Crick, A structure for deoxyribose nucleic acids. Nature 171: 737–738.

  • Yuh, C.H., H. Bolouri & E.H. Davidson, 1998. Genomic cis-regulatory logic: experimental and computational analysis of a sea urchin gene. Science 279: 1896–1902

    Article  PubMed  CAS  Google Scholar 

  • Zou, S., N. KE, J.M. Kim & D.F. Voytas, 1996. The Saccharomyces retrotransposon Ty5 integrates preferentially into regions of silent chromatin at the telomeres and mating loci. Genes Dev. 10: 634–645.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shapiro, J.A. Transposable elements as the key to a 21st century view of evolution. Genetica 107, 171–179 (1999). https://doi.org/10.1023/A:1003977827511

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003977827511

Navigation