ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Mutual Interplay of Light Harvesting and Triplet Sensitizing in a Perylene Bisimide Antenna−Fullerene Dyad

View Author Information
Department of Experimental Physics IV and BIMF, University of Bayreuth, D-95440 Bayreuth, Germany; Applied Functional Polymers, University of Bayreuth, D-95440 Bayreuth, Germany; Organische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; and Department of Chemistry, Imperial College of Science, Technology and Medicine, London SW72AZ, U.K.
* Corresponding author. E-mail: [email protected]
†Department of Experimental Physics IV and BIMF, University of Bayreuth.
‡Applied Functional Polymers, University of Bayreuth.
§Friedrich-Alexander-Universität Erlangen-Nürnberg.
∥Imperial College of Science, Technology and Medicine.
Cite this: J. Phys. Chem. B 2010, 114, 28, 9148–9156
Publication Date (Web):June 28, 2010
https://doi.org/10.1021/jp1035585
Copyright © 2010 American Chemical Society

    Article Views

    2089

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    A flexible organic dyad consisting of a perylene bisimide antenna covalently linked to a [60]fullerene has been synthesized and studied by electrochemistry, steady-state spectroscopy, and time-resolved spectroscopy. We found that the energy absorbed by the perylene bisimide is transferred to the fullerene with an efficiency close to 100%. The fullerene in turn undergoes intersystem crossing followed by triplet energy transfer back to the perylene bisimide with an efficiency of at least 20%. Hence the perylene bisimide unit acts as an antenna for the fullerene, i.e., effectively extending the fullerene absorption far into the visible spectral range, while at the same time the fullerene acts as a triplet sensitizer for the perylene bisimide. This has severe consequences for the exploitation of the dye antenna−fullerene concept for light harvesting in solar cells.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Synthesis of the dyad A-F. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 55 publications.

    1. Timothy A. Barendt, William K. Myers, Stuart P. Cornes, Maria A. Lebedeva, Kyriakos Porfyrakis, Igor Marques, Vítor Félix, Paul D. Beer. The Green Box: An Electronically Versatile Perylene Diimide Macrocyclic Host for Fullerenes. Journal of the American Chemical Society 2020, 142 (1) , 349-364. https://doi.org/10.1021/jacs.9b10929
    2. Meenal Kataria, Manoj Kumar, Zujhar Singh, Vandana Bhalla. Gold Nanoparticles Immobilized Polymeric PBI Derivative: Productive, Portable, and Photocatalytic System for Heck Coupling. ACS Sustainable Chemistry & Engineering 2018, 6 (7) , 8223-8229. https://doi.org/10.1021/acssuschemeng.8b00031
    3. San-E Zhu, Kai-Qing Liu, Xue-Fei Wang, An-Dong Xia, and Guan-Wu Wang . Synthesis and Properties of Axially Symmetrical Rigid Visible Light-Harvesting Systems Containing [60]Fullerene and Perylenebisimide. The Journal of Organic Chemistry 2016, 81 (24) , 12223-12231. https://doi.org/10.1021/acs.joc.6b02042
    4. Wenbo Yang, Jianzhang Zhao, Christoph Sonn, Daniel Escudero, Ahmet Karatay, H. Gul Yaglioglu, Betül Küçüköz, Mustafa Hayvali, Chen Li, and Denis Jacquemin . Efficient Intersystem Crossing in Heavy-Atom-Free Perylenebisimide Derivatives. The Journal of Physical Chemistry C 2016, 120 (19) , 10162-10175. https://doi.org/10.1021/acs.jpcc.6b01584
    5. Zhijia Wang, Yun Xie, Kejing Xu, Jianzhang Zhao, and Ksenija D. Glusac . Diiodobodipy-styrylbodipy Dyads: Preparation and Study of the Intersystem Crossing and Fluorescence Resonance Energy Transfer. The Journal of Physical Chemistry A 2015, 119 (26) , 6791-6806. https://doi.org/10.1021/acs.jpca.5b03463
    6. Caishun Zhang, Jianzhang Zhao, Xiaoneng Cui, and Xueyan Wu . Thiol-Activated Triplet–Triplet Annihilation Upconversion: Study of the Different Quenching Effect of Electron Acceptor on the Singlet and Triplet Excited States of Bodipy. The Journal of Organic Chemistry 2015, 80 (11) , 5674-5686. https://doi.org/10.1021/acs.joc.5b00557
    7. Zafar Mahmood, Kejing Xu, Betül Küçüköz, Xiaoneng Cui, Jianzhang Zhao, Zhijia Wang, Ahmet Karatay, Halime Gul Yaglioglu, Mustafa Hayvali, and Ayhan Elmali . DiiodoBodipy-Perylenebisimide Dyad/Triad: Preparation and Study of the Intramolecular and Intermolecular Electron/Energy Transfer. The Journal of Organic Chemistry 2015, 80 (6) , 3036-3049. https://doi.org/10.1021/jo502899p
    8. Kingsuk Mahata, Peter D. Frischmann, and Frank Würthner . Giant Electroactive M4L6 Tetrahedral Host Self-Assembled with Fe(II) Vertices and Perylene Bisimide Dye Edges. Journal of the American Chemical Society 2013, 135 (41) , 15656-15661. https://doi.org/10.1021/ja4083039
    9. V. Balevičius, Jr., A. Gelzinis, D. Abramavicius, and L. Valkunas . Excitation Energy Transfer and Quenching in a Heterodimer: Applications to the Carotenoid–Phthalocyanine Dyads. The Journal of Physical Chemistry B 2013, 117 (38) , 11031-11041. https://doi.org/10.1021/jp3118083
    10. Maria Angelella, Chen Wang, and Michael J. Tauber . Resonance Raman Spectra of a Perylene Bis(dicarboximide) Chromophore in Ground and Lowest Triplet States. The Journal of Physical Chemistry A 2013, 117 (38) , 9196-9204. https://doi.org/10.1021/jp407879k
    11. Ling Huang, Xuerong Yu, Wanhua Wu, and Jianzhang Zhao . Styryl Bodipy-C60 Dyads as Efficient Heavy-Atom-Free Organic Triplet Photosensitizers. Organic Letters 2012, 14 (10) , 2594-2597. https://doi.org/10.1021/ol3008843
    12. Andreas S. Lang, Anne Neubig, Michael Sommer, and Mukundan Thelakkat . NMRP versus “Click” Chemistry for the Synthesis of Semiconductor Polymers Carrying Pendant Perylene Bisimides. Macromolecules 2010, 43 (17) , 7001-7010. https://doi.org/10.1021/ma100708h
    13. Aurel Diacon, Oksana Krupka, Piétrick Hudhomme. Fullerene-Perylenediimide (C60-PDI) Based Systems: An Overview and Synthesis of a Versatile Platform for Their Anchor Engineering. Molecules 2022, 27 (19) , 6522. https://doi.org/10.3390/molecules27196522
    14. Jasper Deckers, Tom Cardeynaels, Laurence Lutsen, Benoît Champagne, Wouter Maes. Heavy‐Atom‐Free Bay‐Substituted Perylene Diimide Donor‐Acceptor Photosensitizers. ChemPhysChem 2021, 22 (14) , 1488-1496. https://doi.org/10.1002/cphc.202100269
    15. Noreen Rehmat, Ivan V. Kurganskii, Zafar Mahmood, Qing Lin Guan, Jianzhang Zhao, Yong Heng Xing, Gagik G. Gurzadyan, Matvey V. Fedin. Spin–Orbit Charge‐Transfer Intersystem Crossing in Anthracene–Perylenebisimide Compact Electron Donor–Acceptor Dyads and Triads and Photochemical Dianion Formation. Chemistry – A European Journal 2021, 27 (17) , 5521-5535. https://doi.org/10.1002/chem.202005285
    16. San-E Zhu, Jianhui Zhang, Lifeng Dou, Na Li, Kunhong Hu, Tianyu Gao, Hongdian Lu, Jingyu Si, Xuefei Wang, Wei Yang. Rigid axially symmetrical C 60 -BODIPY triplet photosensitizers: effect of bridge length on singlet oxygen generation. New Journal of Chemistry 2020, 44 (46) , 20419-20427. https://doi.org/10.1039/D0NJ05085G
    17. Vladislav Sláma, Václav Perlík, Heinz Langhals, Andreas Walter, Tomáš Mančal, Jürgen Hauer, František Šanda. Anharmonic Molecular Motion Drives Resonance Energy Transfer in peri-Arylene Dyads. Frontiers in Chemistry 2020, 8 https://doi.org/10.3389/fchem.2020.579166
    18. Maximiliano L. Agazzi, Vitor A. S. Almodovar, Natalia S. Gsponer, Sonia Bertolotti, Augusto C. Tomé, Edgardo N. Durantini. Diketopyrrolopyrrole–fullerene C 60 architectures as highly efficient heavy atom-free photosensitizers: synthesis, photophysical properties and photodynamic activity. Organic & Biomolecular Chemistry 2020, 18 (7) , 1449-1461. https://doi.org/10.1039/C9OB02487E
    19. Ezel Öztürk, Hande Eserci, Elif Okutan. Perylenebisimide-fullerene dyads as heavy atom free triplet photosensitizers with unique singlet oxygen generation efficiencies. Journal of Photochemistry and Photobiology A: Chemistry 2019, 385 , 112022. https://doi.org/10.1016/j.jphotochem.2019.112022
    20. Nathalie Zink-Lorre, Azahara Doncel-Giménez, Enrique Font-Sanchis, Joaquín Calbo, Ángela Sastre-Santos, Enrique Ortí, Fernando Fernández-Lázaro. Diels–Alder reaction on perylenediimides: synthesis and theoretical study of core-expanded diimides. Organic Chemistry Frontiers 2019, 6 (16) , 2860-2871. https://doi.org/10.1039/C9QO00682F
    21. Rayane El-Berjawi, Piétrick Hudhomme. Synthesis of a perylenediimide-fullerene C60 dyad: A simple use of a nitro leaving group for a Suzuki-Miyaura coupling reaction. Dyes and Pigments 2018, 159 , 551-556. https://doi.org/10.1016/j.dyepig.2018.07.037
    22. K. Wilma, T. Unger, S. Tuncel Kostakoğlu, M. Hollfelder, C. Hunger, A. Lang, A. G. Gürek, M. Thelakkat, J. Köhler, A. Köhler, S. Gekle, R. Hildner. Excited state dynamics and conformations of a Cu( ii )-phthalocyanine-perylenebisimide dyad. Physical Chemistry Chemical Physics 2017, 19 (33) , 22169-22176. https://doi.org/10.1039/C7CP04026A
    23. N. Zink-Lorre, E. Font-Sanchis, Á. Sastre-Santos, F. Fernández-Lázaro. Fluoride-mediated alkoxylation and alkylthio-functionalization of halogenated perylenediimides. Organic Chemistry Frontiers 2017, 4 (10) , 2016-2021. https://doi.org/10.1039/C7QO00337D
    24. Xiaoneng Cui, Jianzhang Zhao, Ahmet Karatay, Halime Gul Yaglioglu, Mustafa Hayvali, Betül Küçüköz. A Ru(bipyridine) 3 [PF 6 ] 2 Complex with a Rhodamine Unit – Synthesis, Photophysical Properties, and Application in Acid‐Controllable Triplet–Triplet Annihilation Upconversion. European Journal of Inorganic Chemistry 2016, 2016 (32) , 5079-5088. https://doi.org/10.1002/ejic.201600755
    25. Kejing Xu, Jianzhang Zhao, Evan G. Moore. Photo-induced electron transfer in a diamino-substituted Ru(bpy)3[PF6]2 complex and its application as a triplet photosensitizer for nitric oxide (NO)-activated triplet—triplet annihilation upconversion. Photochemical & Photobiological Sciences 2016, 15 (8) , 995-1005. https://doi.org/10.1039/c6pp00153j
    26. Nathalie Zink-Lorre, Enrique Font-Sanchis, Ángela Sastre-Santos, Fernando Fernández-Lázaro. Easy and mild fluoride-mediated direct mono- and dialkoxylation of perylenediimides. Dyes and Pigments 2016, 127 , 9-17. https://doi.org/10.1016/j.dyepig.2015.12.011
    27. Zhenyi Yu, Yishi Wu, Qian Peng, Chunlin Sun, Jianwei Chen, Jiannian Yao, Hongbing Fu. Accessing the Triplet State in Heavy‐Atom‐Free Perylene Diimides. Chemistry – A European Journal 2016, 22 (14) , 4717-4722. https://doi.org/10.1002/chem.201600300
    28. Sandeep Kaur, Manoj Kumar, Vandana Bhalla. Supramolecular ensemble of PBI derivative and copper nanoparticles: a light harvesting antenna for photocatalytic C(sp 2 )–H functionalization. Green Chemistry 2016, 18 (21) , 5870-5883. https://doi.org/10.1039/C6GC01728B
    29. Nathalie Zink-Lorre, Enrique Font-Sanchis, Ángela Sastre-Santos, Fernando Fernández-Lázaro. Direct alkylthio-functionalization of unsubstituted perylenediimides. Organic & Biomolecular Chemistry 2016, 14 (39) , 9375-9383. https://doi.org/10.1039/C6OB01536K
    30. Rajeev K. Dubey, Damla Inan, Sanchita Sengupta, Ernst J. R. Sudhölter, Ferdinand C. Grozema, Wolter F. Jager. Tunable and highly efficient light-harvesting antenna systems based on 1,7-perylene-3,4,9,10-tetracarboxylic acid derivatives. Chemical Science 2016, 7 (6) , 3517-3532. https://doi.org/10.1039/C6SC00386A
    31. Peter Spenst, Ryan M. Young, Michael R. Wasielewski, Frank Würthner. Guest and solvent modulated photo-driven charge separation and triplet generation in a perylene bisimide cyclophane. Chemical Science 2016, 7 (8) , 5428-5434. https://doi.org/10.1039/C6SC01574C
    32. Bhasker Radaram, Mindy Levine. Rationally Designed Supramolecular Organic Hosts for Benzo[ a ]pyrene Binding and Detection. European Journal of Organic Chemistry 2015, 2015 (28) , 6194-6204. https://doi.org/10.1002/ejoc.201500684
    33. Song Guo, Liang Xu, Kejing Xu, Jianzhang Zhao, Betül Küçüköz, Ahmet Karatay, Halime Gul Yaglioglu, Mustafa Hayvali, Ayhan Elmali. Bodipy–C 60 triple hydrogen bonding assemblies as heavy atom-free triplet photosensitizers: preparation and study of the singlet/triplet energy transfer. Chemical Science 2015, 6 (7) , 3724-3737. https://doi.org/10.1039/C4SC03865G
    34. Vitaly V. Chaban, Eudes Eterno Fileti. Strong electronic polarization of the C 60 fullerene by imidazolium-based ionic liquids: accurate insights from Born–Oppenheimer molecular dynamic simulations. Physical Chemistry Chemical Physics 2015, 17 (24) , 15739-15745. https://doi.org/10.1039/C5CP00350D
    35. Xiaoneng Cui, Caishun Zhang, Kejing Xu, Jianzhang Zhao. Application of singlet energy transfer in triplet state formation: broadband visible light-absorbing triplet photosensitizers, molecular structure design, related photophysics and applications. Journal of Materials Chemistry C 2015, 3 (34) , 8735-8759. https://doi.org/10.1039/C5TC01401H
    36. Andreas T. Haedler, Sebastian R. Beyer, Natalie Hammer, Richard Hildner, Milan Kivala, Jürgen Köhler, Hans‐Werner Schmidt. Synthesis and Photophysical Properties of Multichromophoric Carbonyl‐Bridged Triarylamines. Chemistry – A European Journal 2014, 20 (37) , 11708-11718. https://doi.org/10.1002/chem.201403667
    37. Song Guo, Lihua Ma, Jianzhang Zhao, Betül Küçüköz, Ahmet Karatay, Mustafa Hayvali, H. Gul Yaglioglu, Ayhan Elmali. BODIPY triads triplet photosensitizers enhanced with intramolecular resonance energy transfer (RET): broadband visible light absorption and application in photooxidation. Chem. Sci. 2014, 5 (2) , 489-500. https://doi.org/10.1039/C3SC52323C
    38. Jie Ma, Xiaolin Yuan, Betül Küçüköz, Shengfu Li, Caishun Zhang, Poulomi Majumdar, Ahmet Karatay, Xiaohuan Li, H. Gul Yaglioglu, Ayhan Elmali, Jianzhang Zhao, Mustafa Hayvali. Resonance energy transfer-enhanced rhodamine–styryl Bodipy dyad triplet photosensitizers. J. Mater. Chem. C 2014, 2 (20) , 3900-3913. https://doi.org/10.1039/C3TC32456G
    39. F. Spreitler, M. Sommer, M. Hollfelder, M. Thelakkat, S. Gekle, J. Köhler. Unravelling the conformations of di-(perylene bisimide acrylate) by combining time-resolved fluorescence-anisotropy experiments and molecular modelling. Phys. Chem. Chem. Phys. 2014, 16 (47) , 25959-25968. https://doi.org/10.1039/C4CP03064H
    40. Ling Huang, Xiaoneng Cui, Bruno Therrien, Jianzhang Zhao. Energy‐Funneling‐Based Broadband Visible‐Light‐Absorbing Bodipy–C 60 Triads and Tetrads as Dual Functional Heavy‐Atom‐Free Organic Triplet Photosensitizers for Photocatalytic Organic Reactions. Chemistry – A European Journal 2013, 19 (51) , 17472-17482. https://doi.org/10.1002/chem.201302492
    41. Dongmei Li, Zhongzhen Tian, Jinlong Zhang. The composite material of perylene bisimide dye in MCM-41 and its photophysical and photochemical properties. Research on Chemical Intermediates 2013, 39 (4) , 1665-1671. https://doi.org/10.1007/s11164-012-0900-7
    42. Song Guo, Jifu Sun, Lihua Ma, Wenqin You, Pei Yang, Jianzhang Zhao. Visible light-harvesting naphthalenediimide (NDI)-C60 dyads as heavy-atom-free organic triplet photosensitizers for triplet–triplet annihilation based upconversion. Dyes and Pigments 2013, 96 (2) , 449-458. https://doi.org/10.1016/j.dyepig.2012.09.008
    43. Ling Huang, Jianzhang Zhao. C60-Bodipy dyad triplet photosensitizers as organic photocatalysts for photocatalytic tandem oxidation/[3+2] cycloaddition reactions to prepare pyrrolo[2,1-a]isoquinoline. Chemical Communications 2013, 49 (36) , 3751. https://doi.org/10.1039/c3cc41494a
    44. Wanhua Wu, Xiaoneng Cui, Jianzhang Zhao. Hetero Bodipy-dimers as heavy atom-free triplet photosensitizers showing a long-lived triplet excited state for triplet–triplet annihilation upconversion. Chemical Communications 2013, 49 (79) , 9009. https://doi.org/10.1039/c3cc45470c
    45. Angelo Albini. Introduction and review of the years 2010–2011. 2012, 3-41. https://doi.org/10.1039/9781849734882-00003
    46. Bruno Grimm, Julia Schornbaum, Hannelore Jasch, Olga Trukhina, Florian Wessendorf, Andreas Hirsch, Tomas Torres, Dirk M. Guldi. Step-by-step self-assembled hybrids that feature control over energy and charge transfer. Proceedings of the National Academy of Sciences 2012, 109 (39) , 15565-15571. https://doi.org/10.1073/pnas.1113753109
    47. Zuo Xiao, Gang Ye, Ying Liu, Shan Chen, Qian Peng, Qiqun Zuo, Liming Ding. Pushing Fullerene Absorption into the Near‐IR Region by Conjugately Fusing Oligothiophenes. Angewandte Chemie 2012, 124 (36) , 9172-9175. https://doi.org/10.1002/ange.201203981
    48. Zuo Xiao, Gang Ye, Ying Liu, Shan Chen, Qian Peng, Qiqun Zuo, Liming Ding. Pushing Fullerene Absorption into the Near‐IR Region by Conjugately Fusing Oligothiophenes. Angewandte Chemie International Edition 2012, 51 (36) , 9038-9041. https://doi.org/10.1002/anie.201203981
    49. Yifan Liu, Jianzhang Zhao. Visible light-harvesting perylenebisimide–fullerene (C60) dyads with bidirectional “ping-pong” energy transfer as triplet photosensitizers for photooxidation of 1,5-dihydroxynaphthalene. Chemical Communications 2012, 48 (31) , 3751. https://doi.org/10.1039/c2cc30345k
    50. Florian Spreitler, Michael Sommer, Mukundan Thelakkat, Jürgen Köhler. Conformational dynamics of di-(perylene bisimide acrylate) and its footprints in steady-state, time-resolved, and fluorescence-correlation spectroscopy. Physical Chemistry Chemical Physics 2012, 14 (22) , 7971. https://doi.org/10.1039/c2cp40387k
    51. Abey Issac, Richard Hildner, Dominique Ernst, Catharina Hippius, Frank Würthner, Jürgen Köhler. Single molecule studies of calix[4]arene-linked perylene bisimide dimers: relationship between blinking, lifetime and/or spectral fluctuations. Physical Chemistry Chemical Physics 2012, 14 (30) , 10789. https://doi.org/10.1039/c2cp41250k
    52. Natalie Banerji, Mingfeng Wang, Jian Fan, Eneida S. Chesnut, Fred Wudl, Jacques-E. Moser. Sensitization of fullerenes by covalent attachment of a diketopyrrolopyrrole chromophore. Journal of Materials Chemistry 2012, 22 (26) , 13286. https://doi.org/10.1039/c2jm31508d
    53. Pei Yang, Wanhua Wu, Jianzhang Zhao, Dandan Huang, Xiuyu Yi. Using C60-bodipy dyads that show strong absorption of visible light and long-lived triplet excited states as organic triplet photosensitizers for triplet–triplet annihilation upconversion. Journal of Materials Chemistry 2012, 22 (38) , 20273. https://doi.org/10.1039/c2jm34353c
    54. Pirmin A. Ulmann, Hideyuki Tanaka, Yutaka Matsuo, Zuo Xiao, Iwao Soga, Eiichi Nakamura. Electric field dependent photocurrent generation in a thin-film organic photovoltaic device with a [70]fullerene–benzodifuranone dyad. Physical Chemistry Chemical Physics 2011, 13 (47) , 21045. https://doi.org/10.1039/c1cp22886b
    55. Christiane C. Hofmann, Stefan M. Lindner, Michaela Ruppert, Andreas Hirsch, Saif A. Haque, Mukundan Thelakkat, Jürgen Köhler. The influence of π–π-stacking on the light-harvesting properties of perylene bisimide antennas that are covalently linked to a [60]fullerene. Physical Chemistry Chemical Physics 2010, 12 (43) , 14485. https://doi.org/10.1039/c0cp01200a

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect