ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Effects of Diammonium Phosphate on the Yields and Composition of Products from Wood Pyrolysis

View Author Information
Dipartimento di Ingegneria Chimica, Università degli Studi di Napoli Federico II, Piazzale V. Tecchio, 80125 Napoli, Italy
Cite this: Ind. Eng. Chem. Res. 2007, 46, 2, 430–438
Publication Date (Web):December 9, 2006
https://doi.org/10.1021/ie0612616
Copyright © 2007 American Chemical Society

    Article Views

    800

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    The catalytic effects of diammonium phosphate on wood pyrolysis are investigated for applications in specialty chemical production and fire retardance. For a fixed-bed reactor operated at a temperature of 800 K, over a range of salt concentrations of 0−20%, the yields of char and water continuously increase (from 22 and 20%, respectively, to 45%), at the expense mainly of organic liquid products (from 43 to 6%) with only a small reduction in the yields of gases (percentages on a dry wood basis). As for the organic products, the yields of phenols, guaiacols, hydroxyacetaldehyde, hydroxypropanone, and some other minor carbohydrates rapidly attain low values. Major variations are undergone by levoglucosan only for mild treatments of wood, whereas levoglucosenone and 2-furaldehyde remain at the maximum values over a range of salt concentrations of roughly 2−5%. Diminution in the yields of acetic acid is generally slow. The same qualitative trends are preserved for a reactor temperature of 650 K. The ratio of the noncombustible to the combustible volatile products increases from 0.5 up to 5.5 already for a salt concentration of about 10%, thus confirming the fire-retardant action of diammonium phosphate in wood. Conversion times and global devolatilization rates are significantly affected by the modifications in the process energetics caused by salt addition.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

     To whom correspondence should be addressed. E-mail:  diblasi@ unina.it.

    Cited By

    This article is cited by 64 publications.

    1. Carmen Branca, Colomba Di Blasi. Burning Dynamics of Straw Chars under the Conditions of Thermal Analysis. Energy & Fuels 2021, 35 (15) , 12187-12199. https://doi.org/10.1021/acs.energyfuels.1c01441
    2. Andreas Bengtsson, Jenny Bengtsson, Maria Sedin, Elisabeth Sjöholm. Carbon Fibers from Lignin-Cellulose Precursors: Effect of Stabilization Conditions. ACS Sustainable Chemistry & Engineering 2019, 7 (9) , 8440-8448. https://doi.org/10.1021/acssuschemeng.9b00108
    3. C. Di Blasi, C. Branca, A. Galgano, and F. Zenone . Modifications in the Thermicity of the Pyrolysis Reactions of ZnCl2-Loaded Wood. Industrial & Engineering Chemistry Research 2015, 54 (51) , 12741-12749. https://doi.org/10.1021/acs.iecr.5b03694
    4. C. Di Blasi, C. Branca, A. Galgano, and P. D’Agostino . Thermal Behavior of Beech Wood during Sulfuric Acid Catalyzed Pyrolysis. Energy & Fuels 2015, 29 (10) , 6476-6484. https://doi.org/10.1021/acs.energyfuels.5b01315
    5. C. Di Blasi, C. Branca, V. Lombardi, P. Ciappa, and C. Di Giacomo . Effects of Particle Size and Density on the Packed-Bed Pyrolysis of Wood. Energy & Fuels 2013, 27 (11) , 6781-6791. https://doi.org/10.1021/ef401481j
    6. C. Di Blasi, C. Branca, F. Masotta, and E. De Biase . Experimental Analysis of Reaction Heat Effects during Beech Wood Pyrolysis. Energy & Fuels 2013, 27 (5) , 2665-2674. https://doi.org/10.1021/ef4001709
    7. C. Branca, C. Di Blasi, C. Mango, and I. Hrablay . Products and Kinetics of Glucomannan Pyrolysis. Industrial & Engineering Chemistry Research 2013, 52 (14) , 5030-5039. https://doi.org/10.1021/ie400155x
    8. C. Branca, C. Di Blasi, and A. Galgano . Catalyst Screening for the Production of Furfural from Corncob Pyrolysis. Energy & Fuels 2012, 26 (3) , 1520-1530. https://doi.org/10.1021/ef202038n
    9. C. Di Blasi, A. Galgano, and C. Branca . Analysis of the Physical and Chemical Mechanisms of Potassium Catalysis in the Decomposition Reactions of Wood. Industrial & Engineering Chemistry Research 2011, 50 (7) , 3864-3873. https://doi.org/10.1021/ie102092p
    10. Carmen Branca, Antonio Galgano, Carlo Blasi, Mariangela Esposito, and Colomba Di Blasi . H2SO4-Catalyzed Pyrolysis of Corncobs. Energy & Fuels 2011, 25 (1) , 359-369. https://doi.org/10.1021/ef101317f
    11. C. Branca , C. Di Blasi and A. Galgano . Pyrolysis of Corncobs Catalyzed by Zinc Chloride for Furfural Production. Industrial & Engineering Chemistry Research 2010, 49 (20) , 9743-9752. https://doi.org/10.1021/ie101067v
    12. C. Di Blasi, C. Branca and A. Galgano . Biomass Screening for the Production of Furfural via Thermal Decomposition. Industrial & Engineering Chemistry Research 2010, 49 (6) , 2658-2671. https://doi.org/10.1021/ie901731u
    13. Colomba Di Blasi and Antonio Galgano, Carmen Branca. Influences of the Chemical State of Alkaline Compounds and the Nature of Alkali Metal on Wood Pyrolysis. Industrial & Engineering Chemistry Research 2009, 48 (7) , 3359-3369. https://doi.org/10.1021/ie801468y
    14. Colomba Di Blasi, Antonio Galgano and Carmen Branca. Effects of Potassium Hydroxide Impregnation on Wood Pyrolysis. Energy & Fuels 2009, 23 (2) , 1045-1054. https://doi.org/10.1021/ef800827q
    15. Manuel Garcia-Perez,, Xiao Shan Wang,, Jun Shen,, Martin J. Rhodes,, Fujun Tian,, Woo-Jin Lee,, Hongwei Wu, and, Chun-Zhu Li. Fast Pyrolysis of Oil Mallee Woody Biomass:  Effect of Temperature on the Yield and Quality of Pyrolysis Products. Industrial & Engineering Chemistry Research 2008, 47 (6) , 1846-1854. https://doi.org/10.1021/ie071497p
    16. Colomba Di Blasi, Carmen Branca and Antonio Galgano. Products and Global Weight Loss Rates of Wood Decomposition Catalyzed by Zinc Chloride. Energy & Fuels 2008, 22 (1) , 663-670. https://doi.org/10.1021/ef700464s
    17. Jovana Petkovska, Nina Mladenovic, William Leising, Aliaksandr Baidak, Mishela Temkov, Dejan Mirakovski, Vesna Dimova, Igor Jordanov. Egg white proteins/lignin-DAP intumescent multilayer nanocoating for flame retardant cotton fabric. Progress in Organic Coatings 2024, 186 , 107983. https://doi.org/10.1016/j.porgcoat.2023.107983
    18. Shoulu Yang, Zhongwei Wang, Zhu Liu, Yiqiang Wu. Enhancing durable fire safety and Anti-Corrosion performance of wood through controlled In-Situ Self-Assembly synthesis of Ag-PW nanospheres. Chemical Engineering Journal 2023, 475 , 145227. https://doi.org/10.1016/j.cej.2023.145227
    19. Iben Hansen-Bruhn, T. Richard Hull. Flammability and burning behaviour of fire protected timber. Fire Safety Journal 2023, 140 , 103918. https://doi.org/10.1016/j.firesaf.2023.103918
    20. Carmen Branca, Colomba Di Blasi. Oxidative Conversion of Chars Generated from the Fixed-Bed Pyrolysis of Wood Torrefied at Different Temperatures and Holding Times. Processes 2023, 11 (4) , 997. https://doi.org/10.3390/pr11040997
    21. Shoulu Yang, Zhongwei Wang, Zhu Liu, Ning Ji, Yiqiang Wu. In situ synthesis and self-assembly of acid nanospheres with anti-leach properties for the development of fire-resistant wood. Journal of Industrial and Engineering Chemistry 2023, 119 , 414-427. https://doi.org/10.1016/j.jiec.2022.11.064
    22. Shoulu Yang, Zhongwei Wang, Zhu Liu, Ning Ji, Yiqiang Wu. In-situ synthesis and assembly of nanospheres (Py1H2PW, Py2H1PW, and Py3PW) in wood to promote flame retardation. Industrial Crops and Products 2022, 189 , 115875. https://doi.org/10.1016/j.indcrop.2022.115875
    23. Shaodi Zhang, Xuan Wang, Mengyi Ding, Yuxiang Huang, Li Li, Mingzhi Wang. In-situ incorporation of metal phytates for green and highly efficient flame-retardant wood with excellent smoke-suppression property. Industrial Crops and Products 2022, 187 , 115287. https://doi.org/10.1016/j.indcrop.2022.115287
    24. Mahesh Kumar, Mahender Kumar, Kapil Gulati, Rajeev Bagoria, Sanjiv Arora. Thermal, flammability and iso-conversional multiple heating rate kinetic studies of impregnated poplar wood veneers. Journal of the Indian Academy of Wood Science 2022, 19 (1) , 30-39. https://doi.org/10.1007/s13196-022-00289-5
    25. L.L. Cueva Z., G.J. Griffin, L.P. Ward, S. Madapusi, K.V. Shah, R. Parthasarathy. A study of chemical pre-treatment and pyrolysis operating conditions to enhance biochar production from rice straw. Journal of Analytical and Applied Pyrolysis 2022, 163 , 105455. https://doi.org/10.1016/j.jaap.2022.105455
    26. Siraprapa Suwanree, Jesper T.N. Knijnenburg, Pornnapa Kasemsiri, Wasawat Kraithong, Prinya Chindaprasirt, Kaewta Jetsrisuparb. Engineered biochar from sugarcane leaves with slow phosphorus release kinetics. Biomass and Bioenergy 2022, 156 , 106304. https://doi.org/10.1016/j.biombioe.2021.106304
    27. Shoulu Yang, Zhongwei Wang, Zhu Liu, Ning Ji, Yiqiang Wu. In-Situ Synthesis and Assembly of Acid Nanospheres in Wood to Promote Flame Retardation. SSRN Electronic Journal 2022, 33 https://doi.org/10.2139/ssrn.4096618
    28. Obafemi O Olatunji, Stephen Akinlabi, Nkosinathi Madushele, Paul A. Adedeji, Matumuene J. Ndolomingo. Geospatial investigation of physicochemical properties and thermodynamic parameters of biomass residue for energy generation. Biomass Conversion and Biorefinery 2021, 11 (6) , 2813-2827. https://doi.org/10.1007/s13399-020-00723-z
    29. Nor Sharliza Mohd Safaai, Shusheng Pang. Pyrolysis kinetics of chemically treated and torrefied radiata pine identified through thermogravimetric analysis. Renewable Energy 2021, 175 , 200-213. https://doi.org/10.1016/j.renene.2021.04.117
    30. Tung Son, Hien T. T. Nguyen, Huong T. Q. Phan, Chi T. Pham, Binh T. Nguyen, Lam H. Pham, Thi Vi Vi Do, Hai Vothi, Jinhwan Kim, Dong Quy Hoang. Phosphorus/phosphorus-nitrogen flame retardants applied to polyurethane/rice husk eco-composites: thermal behavior, flame retardancy, and physico-mechanical properties. Polymer Bulletin 2021, 78 (5) , 2727-2743. https://doi.org/10.1007/s00289-020-03237-w
    31. Khemaies Brahim, Khalil Rouissi, Amira Soussi-Baatout, Ismail Khattech. Thermochemistry and kinetics of the aspect of diammonium hydrogen phosphate precipitation in phosphoric acid solution. Journal of Thermal Analysis and Calorimetry 2021, 143 (4) , 3173-3179. https://doi.org/10.1007/s10973-020-09399-z
    32. Shiying Li, Xiefei Zhu, Shanshan Li, Xifeng Zhu. Improved bio-oil distilling effect by adding additives to enhance downstream bio-oil processing and separation. Separation and Purification Technology 2020, 247 , 116982. https://doi.org/10.1016/j.seppur.2020.116982
    33. Kai Li, Bo Wang, Dana Bolatibieke, Dong-hong Nan, Qiang Lu. Pyrolysis of Biomass Impregnated With Ammonium Dihydrogen Phosphate for Polygeneration of Phenol and Supercapacitor Electrode Material. Frontiers in Chemistry 2020, 8 https://doi.org/10.3389/fchem.2020.00436
    34. Saara Hautamäki, Michael Altgen, Daniela Altgen, Erik Larnøy, Tuomas Hänninen, Lauri Rautkari. The effect of diammonium phosphate and sodium silicate on the adhesion and fire properties of birch veneer. Holzforschung 2020, 74 (4) , 372-381. https://doi.org/10.1515/hf-2019-0059
    35. Muhammad Maqsood, Fabian Langensiepen, Gunnar Seide. Investigation of melt spinnability of plasticized polylactic acid biocomposites-containing intumescent flame retardant. Journal of Thermal Analysis and Calorimetry 2020, 139 (1) , 305-318. https://doi.org/10.1007/s10973-019-08405-3
    36. 文军 郑. Influence of Flame Retardants on the Whole Process of Wood Combustion. Advances in Analytical Chemistry 2020, 10 (03) , 80-86. https://doi.org/10.12677/AAC.2020.103012
    37. Xiujuan Guo, Xuemei Gong, Lili Wei, Qiu Tu. Pyrolysis and Combustion Behavior of Pinewood After the Addition of Flame Retardants. Advances in Civil Engineering Materials 2019, 8 (1) , 20180141. https://doi.org/10.1520/ACEM20180141
    38. Wafa Dastyar, Abdul Raheem, Jun He, Ming Zhao. Biofuel Production Using Thermochemical Conversion of Heavy Metal-Contaminated Biomass (HMCB) Harvested from Phytoextraction Process. Chemical Engineering Journal 2019, 358 , 759-785. https://doi.org/10.1016/j.cej.2018.08.111
    39. Sinem Ograk, Gregory J. Griffin, Muthu Pannirselvam. Potential Use of Biochar from Sugarcane Bagasse for Treatment of Textile Wastewater. 2019, 115-133. https://doi.org/10.1007/978-3-319-75199-3_7
    40. Lihui Gao, Jillian L. Goldfarb. Solid waste to biofuels and heterogeneous sorbents via pyrolysis of wheat straw in the presence of fly ash as an in situ catalyst. Journal of Analytical and Applied Pyrolysis 2019, 137 , 96-105. https://doi.org/10.1016/j.jaap.2018.11.014
    41. Mohit Nahata, Chang Y. Seo, Pradeep Krishnakumar, Johannes Schwank. New approaches to water purification for resource-constrained settings: Production of activated biochar by chemical activation with diammonium hydrogenphosphate. Frontiers of Chemical Science and Engineering 2018, 12 (1) , 194-208. https://doi.org/10.1007/s11705-017-1647-x
    42. Lingna Shi, Lijun Wang, Tao Zhang, Jianfa Li, Xiaoyi Huang, Jing Cai, Jinhong Lü, Yue Wang. Reducing the bioavailability and leaching potential of lead in contaminated water hyacinth biomass by phosphate-assisted pyrolysis. Bioresource Technology 2017, 241 , 908-914. https://doi.org/10.1016/j.biortech.2017.06.025
    43. Thirumal Mariappan. Fire Retardant Coatings. 2017https://doi.org/10.5772/67675
    44. C. Branca, C. Di Blasi, A. Galgano. Experimental analysis about the exploitation of industrial hemp ( Cannabis sativa ) in pyrolysis. Fuel Processing Technology 2017, 162 , 20-29. https://doi.org/10.1016/j.fuproc.2017.03.028
    45. Aurélie Cayla, François Rault, Stéphane Giraud, Fabien Salaün, Vanessa Fierro, Alain Celzard. PLA with Intumescent System Containing Lignin and Ammonium Polyphosphate for Flame Retardant Textile. Polymers 2016, 8 (9) , 331. https://doi.org/10.3390/polym8090331
    46. C. Branca, C. Di Blasi, A. Galgano. Chemical characterization of volatile products of biomass pyrolysis under significant reaction-induced overheating. Journal of Analytical and Applied Pyrolysis 2016, 119 , 8-17. https://doi.org/10.1016/j.jaap.2016.04.004
    47. Ali Imran, Eddy A. Bramer, Kulathuiyer Seshan, Gerrit Brem. Catalytic flash pyrolysis of oil-impregnated-wood and jatropha cake using sodium based catalysts. Journal of Analytical and Applied Pyrolysis 2016, 117 , 236-246. https://doi.org/10.1016/j.jaap.2015.11.010
    48. Oisik Das, Ajit K. Sarmah. Mechanism of waste biomass pyrolysis: Effect of physical and chemical pre-treatments. Science of The Total Environment 2015, 537 , 323-334. https://doi.org/10.1016/j.scitotenv.2015.07.076
    49. Oisik Das, Ajit K. Sarmah. Value added liquid products from waste biomass pyrolysis using pretreatments. Science of The Total Environment 2015, 538 , 145-151. https://doi.org/10.1016/j.scitotenv.2015.08.025
    50. D. S. Bakirtzis, V. C. Tsapara, K. G. Kolovos, S. E. Liodakis. Assessment of the impact of fire retardants on the combustion of natural polymers employing DTG and LOI. Fire and Materials 2015, 39 (2) , 109-118. https://doi.org/10.1002/fam.2232
    51. Ali Imran, Eddy A. Bramer, Kulathuiyer Seshan, Gerrit Brem. High quality bio-oil from catalytic flash pyrolysis of lignocellulosic biomass over alumina-supported sodium carbonate. Fuel Processing Technology 2014, 127 , 72-79. https://doi.org/10.1016/j.fuproc.2014.06.011
    52. Diana Castellanos, Arthur Lewandowski, Agustín Diaz, Andres F. Mejia, Victor Carreto, Chad Mashuga, Ali S. Rangwala, Zhengdong Cheng, M. Sam Mannan. Influence of Particle Size and Crystalline Level on the Efficiency of Dust Explosion Inhibitors. Industrial & Engineering Chemistry Research 2014, 53 (28) , 11527-11537. https://doi.org/10.1021/ie500671m
    53. İsmail Karacan, Taner Soy. Investigation of structural transformations taking place during oxidative stabilization of viscose rayon precursor fibers prior to carbonization and activation. Journal of Molecular Structure 2013, 1041 , 29-38. https://doi.org/10.1016/j.molstruc.2013.02.040
    54. Xi-feng Zhu, Qiang Lu. Selective Fast Pyrolysis of Biomass to Produce Fuels and Chemicals. 2013, 129-146. https://doi.org/10.1007/978-1-4614-3348-4_10
    55. Fiona R. Scarff, Brian F. Gray, Mark Westoby. Exploring phosphate effects on leaf flammability using a physical chemistry model. International Journal of Wildland Fire 2012, 21 (8) , 1042. https://doi.org/10.1071/WF09065
    56. Carmen Branca, Colomba Di Blasi. Semi-global mechanisms for the oxidation of diammonium phosphate impregnated wood. Journal of Analytical and Applied Pyrolysis 2011, 91 (1) , 97-104. https://doi.org/10.1016/j.jaap.2011.01.008
    57. Qiang Lu, Chang-qing Dong, Xu-ming Zhang, Hui-yun Tian, Yong-ping Yang, Xi-feng Zhu. Selective fast pyrolysis of biomass impregnated with ZnCl2 to produce furfural: Analytical Py-GC/MS study. Journal of Analytical and Applied Pyrolysis 2011, 90 (2) , 204-212. https://doi.org/10.1016/j.jaap.2010.12.007
    58. Tommaso Ciacci, Antonio Galgano, Colomba Di Blasi. Numerical simulation of the electromagnetic field and the heat and mass transfer processes during microwave-induced pyrolysis of a wood block. Chemical Engineering Science 2010, 65 (14) , 4117-4133. https://doi.org/10.1016/j.ces.2010.04.039
    59. Manuel Garcia-Perez, Jun Shen, Xiao Shan Wang, Chun-Zhu Li. Production and fuel properties of fast pyrolysis oil/bio-diesel blends. Fuel Processing Technology 2010, 91 (3) , 296-305. https://doi.org/10.1016/j.fuproc.2009.10.012
    60. A. Àgueda, S. Liodakis, E. Pastor, E. Planas. Characterization of the thermal degradation and heat of combustion of Pinus halepensis needles treated with ammonium-polyphosphate-based retardants. Journal of Thermal Analysis and Calorimetry 2009, 98 (1) , 235-243. https://doi.org/10.1007/s10973-009-0134-0
    61. Fiona R. Scarff, Mark Westoby. The influence of tissue phosphate on plant flammability: A kinetic study. Polymer Degradation and Stability 2008, 93 (10) , 1930-1934. https://doi.org/10.1016/j.polymdegradstab.2008.06.014
    62. Carmen Branca, Colomba Di Blasi. Oxidative devolatilization kinetics of wood impregnated with two ammonium salts. Fire Safety Journal 2008, 43 (5) , 317-324. https://doi.org/10.1016/j.firesaf.2007.11.004
    63. Colomba Di Blasi, Carmen Branca, Antonio Galgano. Thermal and catalytic decomposition of wood impregnated with sulfur- and phosphorus-containing ammonium salts. Polymer Degradation and Stability 2008, 93 (2) , 335-346. https://doi.org/10.1016/j.polymdegradstab.2007.12.003
    64. Carmen Branca, Colomba Di Blasi. Oxidation characteristics of chars generated from wood impregnated with (NH4)2HPO4 and (NH4)2SO4. Thermochimica Acta 2007, 456 (2) , 120-127. https://doi.org/10.1016/j.tca.2007.02.009

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect