Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-07T06:48:33.573Z Has data issue: false hasContentIssue false

Interaction of Cygnus A with its environment

Published online by Cambridge University Press:  24 March 2015

Paul E. J. Nulsen
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA email: pnulsen@cfa.harvard.edu, rkraft@cfa.harvard.edu
Andrew J. Young
Affiliation:
School of Physics, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK email: andy.young@bristol.ac.uk
Ralph P. Kraft
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA email: pnulsen@cfa.harvard.edu, rkraft@cfa.harvard.edu
Brian R. McNamara
Affiliation:
Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, CanadaN2L 3G1 email: mcnamara@uwaterloo.ca
Michael W. Wise
Affiliation:
ASTRON, Netherlands Institute for Radio Astronomy P.O. Box 2, 7990 AA Dwingeloo, Netherlands email: wise@astron.nl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Cygnus A, the nearest truly powerful radio galaxy, resides at the centre of a massive galaxy cluster. Chandra X-ray observations reveal its cocoon shocks, radio lobe cavities and an X-ray jet, which are discussed here. It is argued that X-ray emission from the outer regions of the cocoon shocks is nonthermal. The X-ray jets are best interpreted as synchrotron emission, suggesting that they, rather than the radio jets, are the path of energy flow from the nucleus to the hotspots. In that case, a model shows that the jet flow is non-relativistic and carries in excess of one solar mass per year.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Carilli, C. L. & Barthel, P. D. 1996, A&ARv, 7, 1Google Scholar
Carilli, C. L., Perley, R. A., & Harris, D. E. 1994, MNRAS, 270, 173Google Scholar
Chon, G., Böhringer, H., Krause, M., & Trümper, J. 2012, A&A, 545, LL3Google Scholar
Croston, J. H., Kraft, R. P., & Hardcastle, M. J., et al. 2009, MNRAS, 395, 1999Google Scholar
Goodger, J. L., Hardcastle, M. J., & Croston, J. H., et al. 2010, ApJ, 708, 675Google Scholar
Harris, D. E., Carilli, C. L., & Perley, R. A. 1994, Nature, 367, 713Google Scholar
Laing, R. A. & Bridle, A. H. 2002, MNRAS, 336, 1161CrossRefGoogle Scholar
McKean, J., Ker, L., & van Weeren, R. J., et al. 2011, arXiv:1106.1041Google Scholar
Nulsen, P. E. J., McNamara, B. R., Wise, M. W., & David, L. P. 2005, ApJ, 628, 629Google Scholar
Perley, R. A., Dreher, J. W., & Cowan, J. J. 1984, ApJ, 285, L35Google Scholar
Pizzolato, F. & Soker, N. 2006, MNRAS, 371, 1835Google Scholar
Reynolds, C. S., McKernan, B., & Fabian, A. C., et al. 2005, MNRAS, 357, 242Google Scholar
Smith, D. A., Wilson, A. S., Arnaud, K. A., Terashima, Y., & Young, A. J. 2002, ApJ, 565, 195Google Scholar
Steenbrugge, K. C., Blundell, K. M., & Duffy, P. 2008, MNRAS, 388, 1465Google Scholar
Wilson, A. S., Young, A. J., & Shopbell, P. L. 2000, ApJ, 544, L27CrossRefGoogle Scholar