Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-13T11:48:12.642Z Has data issue: false hasContentIssue false

Effects of kisspeptin on the maturation of human ovarian primordial follicles in vitro

Published online by Cambridge University Press:  15 December 2023

Fatemeh Rezaei-Tazangi
Affiliation:
Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
Leila Kooshesh
Affiliation:
Department of Genetics, Fars Academic Center for Education, Culture and Research, ACECR, Shiraz, Iran
Ali Tayyebiazar
Affiliation:
Clinical Research Development Unit of Imam Khomeini Hospital, Urmia University of Medical Sciences, Urmia, I.R. Iran
Neda Taghizabet
Affiliation:
Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Anahita Tavakoli
Affiliation:
Department of Biology, Faculty of Science, Arak University, Arak, Iran
Ashraf Hassanpour
Affiliation:
Anatomical Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
Fereshteh Aliakbari*
Affiliation:
Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Ebrahim Kharazinejad
Affiliation:
Department of Anatomy, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Iran
Ali-Mohammad Sharifi
Affiliation:
Clinical Research Development Center, Shahid Modarres Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
*
Corresponding author: Fereshteh Aliakbari; Email: fereshtehaliakbari60@gmail.com

Summary

At this time, with advances in medical science, many cancers and chronic diseases are treatable, but one of their side effects is infertility. Some women also want to delay pregnancy for personal reasons. There has been some evidence that kisspeptin activates broad signals by binding to its receptor, suggesting that the role of kisspeptin in direct control of ovarian function includes follicle growth and steroid production. In this study, the effect of kisspeptin on improving the quality and results for human ovarian follicles was investigated. A section of ovary was removed laparoscopically from women between 20 and 35 years of age (n = 12). Pieces were divided randomly into two groups, control and treatment (with 1 μM kisspeptin). Real-time PCR was performed for GDF9, BMP15 and mTOR gene expression assessments. Western blotting was carried out to measure AKT and FOXO3a protein expression. Data were analyzed using one-way analysis of variance (ANOVA) and Tukey’s test; means were considered significantly different at a P-value < 0.05. During treatment with the kisspeptin group, maturity genes are expressed. Therefore, kisspeptin is an effective substance to improve the quality of the human ovarian medium as it increases the maturity of follicles.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Leila Kooshesh and Ali Tayyebiazar contributed equally to this work.

References

Aslan, M., Erkanli Senturk, G., Akkaya, H., Sahin, S. and Yılmaz, B. (2017). The effect of oxytocin and kisspeptin-10 in ovary and uterus of ischemia-reperfusion injured rats. Taiwanese Journal of Obstetrics and Gynecology, 56(4), 456462. doi: 10.1016/j.tjog.2016.12.018 CrossRefGoogle ScholarPubMed
Cao, Y., Li, Z., Jiang, W., Ling, Y. and Kuang, H. (2019). Reproductive functions of kisspeptin/KISS1R systems in the periphery. Reproductive Biology and Endocrinology, 17(1), 65. doi: 10.1186/s12958-019-0511-x.CrossRefGoogle ScholarPubMed
Choi, J., Lee, J. Y., Lee, E., Yoon, B. K., Bae, D. and Choi, D. (2007). Cryopreservation of the mouse ovary inhibits the onset of primordial follicle development. Cryobiology, 54(1), 5562. doi: 10.1016/j.cryobiol.2006.11.003 CrossRefGoogle ScholarPubMed
Donnez, J. and Dolmans, M. M. (2017). Fertility preservation in women. New England Journal of Medicine, 377(17), 16571665. doi: 10.1056/NEJMra1614676 CrossRefGoogle ScholarPubMed
Ebrahimi, B., Valojerdi, M. R., Eftekhari-Yazdi, P., Baharvand, H. and Farrokhi, A. (2010). IVM and gene expression of sheep cumulus–oocyte complexes following different methods of vitrification. Reproductive Biomedicine Online, 20(1), 2634. doi: 10.1016/j.rbmo.2009.10.020 CrossRefGoogle ScholarPubMed
Hu, K. L., Zhao, H., Chang, H. M., Yu, Y. and Qiao, J. (2017). Kisspeptin/kisspeptin receptor system in the ovary. Frontiers in Endocrinology, 8, 365. doi: 10.3389/fendo.2017.00365 CrossRefGoogle ScholarPubMed
Jadoul, P., Dolmans, M. M. and Donnez, J. (2010). Fertility preservation in girls during childhood: Is it feasible, efficient and safe and to whom should it be proposed? Human Reproduction Update, 16(6), 617630. doi: 10.1093/humupd/dmq010 CrossRefGoogle ScholarPubMed
Kona, S. S., Praveen Chakravarthi, V., Siva Kumar, A. V., Srividya, D., Padmaja, K. and Rao, V. H. (2016). Quantitative expression patterns of GDF9 and BMP15 genes in sheep ovarian follicles grown in vivo or cultured in vitro . Theriogenology, 85(2), 315322. doi: 10.1016/j.theriogenology.2015.09.022 CrossRefGoogle ScholarPubMed
Kotani, M., Detheux, M., Vandenbogaerde, A., Communi, D., Vanderwinden, J. M., Le Poul, E., Brézillon, S., Tyldesley, R., Suarez-Huerta, N., Vandeput, F., Blanpain, C., Schiffmann, S. N., Vassart, G. and Parmentier, M. (2001). The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. Journal of Biological Chemistry, 276(37), 3463134636. doi: 10.1074/jbc.M104847200 CrossRefGoogle ScholarPubMed
MacManes, M. D., Austin, S. H., Lang, A. S., Booth, A., Farrar, V. and Calisi, R. M. (2017). Widespread patterns of sexually dimorphic gene expression in an avian hypothalamic–pituitary–gonadal (HPG) axis. Scientific Reports, 7(1), 45125. doi: 10.1038/srep45125 CrossRefGoogle Scholar
Mazoochi, T., Salehnia, M., Pourbeiranvand, S., Forouzandeh, M., Mowla, S. J. and Hajizadeh, E. (2009). Analysis of apoptosis and expression of genes related to apoptosis in cultures of follicles derived from vitrified and non-vitrified ovaries. Molecular Human Reproduction, 15(3), 155164. doi: 10.1093/molehr/gap002 CrossRefGoogle ScholarPubMed
Qin, X., Zhao, Y., Zhang, T., Yin, C., Qiao, J., Guo, W. and Lu, B. (2022, February 17). TrkB agonist antibody ameliorates fertility deficits in aged and cyclophosphamide-induced premature ovarian failure model mice. Nature Communications, 13(1), 914. doi: 10.1038/s41467-022-28611-2 CrossRefGoogle ScholarPubMed
Ramezani, M., Salehnia, M. and Jafarabadi, M. (2017). Short term culture of vitrified human ovarian cortical tissue to assess the cryopreservation outcome: Molecular and morphological analysis. Journal of Reproduction and Infertility, 18(1), 162171.Google ScholarPubMed
Rivas Leonel, E. C. R., Lucci, C. M. and Amorim, C. A. (2019). Cryopreservation of human ovarian tissue: A review. Transfusion Medicine and Hemotherapy, 46(3), 173181. doi: 10.1159/000499054 CrossRefGoogle ScholarPubMed
Shi, Q., Xie, Y., Wang, Y. and Li, S. (2017). Vitrification versus slow freezing for human ovarian tissue cryopreservation: A systematic review and meta-analysis. Scientific Reports, 7(1), 8538. doi: 10.1038/s41598-017-09005-7 CrossRefGoogle Scholar
Skorupskaite, K., George, J. T. and Anderson, R. A. (2014). The kisspeptin-GnRH pathway in human reproductive health and disease. Human Reproduction Update, 20(4), 485500. doi: 10.1093/humupd/dmu009 CrossRefGoogle ScholarPubMed
Taghizabet, N., Khalili, M. A., Anbari, F., Agha-Rahimi, A., Nottola, S. A., Macchiarelli, G. and Palmerini, M. G. (2018). Human cumulus cell sensitivity to vitrification, an ultrastructural study. Zygote, 26(3), 224231. doi: 10.1017/S0967199418000138 CrossRefGoogle ScholarPubMed
Taniguchi, Y., Kuwahara, A., Tachibana, A., Yano, Y., Yano, K., Yamamoto, Y., Yamasaki, M., Iwasa, T., Hinokio, K., Matsuzaki, T. and Irahara, M. (2017). Intra-follicular kisspeptin levels are related to oocyte maturation and gonadal hormones in patients who are undergoing assisted reproductive technology. Reproductive Medicine and Biology, 16(4), 380385. doi: 10.1002/rmb2.12056 CrossRefGoogle ScholarPubMed
Trapphoff, T., Heiligentag, M., Simon, J., Staubach, N., Seidel, T., Otte, K., Fröhlich, T., Arnold, G. J. and Eichenlaub-Ritter, U. (2016). Improved cryotolerance and developmental potential of in vitro and in vivo matured mouse oocytes by supplementing with a glutathione donor prior to vitrification. Molecular Human Reproduction, 22(12), 867881. doi: 10.1093/molehr/gaw059.Google ScholarPubMed
Wallace, W. H. B., Smith, A. G., Kelsey, T. W., Edgar, A. E. and Anderson, R. A. (2014). Fertility preservation for girls and young women with cancer: Population-based validation of criteria for ovarian tissue cryopreservation. Lancet. Oncology, 15(10), 11291136. doi: 10.1016/S1470-2045(14)70334-1 CrossRefGoogle Scholar